Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
NOVOTNÁ, P. VIČAR, T. HEJČ, J. RONZHINA, M.
Originální název
Deep-Learning Premature Contraction Localization Using Gaussian Based Predicted Data
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Detection of cardiac arrhythmias is still an ongoing challenge. Here we focus on premature ventricular contraction (PVC) and premature atrial contraction (PAC) and introduce a deep-learning-based method for PVC/PAC localization in ECG. Our method is based on involving the time series with non-zero values corresponding to the ground truth PVC/PAC positions into the training process. To improve the efficiency of deep model training, the transition between the non-zero and zero areas in the train output time series was smoothed by introducing a Gaussian function. When applied to the new ECGs, the output signal (time series including Gaussians) is processed by a robust peak detector with Bayesian optimization of threshold, minimal distance and peak prominence. Positions of the detected peaks correspond to the desired PVC/PAC positions. The proposed method was evaluated on China Physiological Signal Challenge 2018 (CPSC2018) using own-created ground truth positions of PVC/PAC. The proposed method reached F1 score 0.923 and 0.688 for PAC and PVC, respectively, which is better than our previous results obtained via multiple instance learning-based method.
Klíčová slova
ECG; premature contraction; convolutional neural network; deep learning
Autoři
NOVOTNÁ, P.; VIČAR, T.; HEJČ, J.; RONZHINA, M.
Vydáno
18. 11. 2021
Nakladatel
Computing in Cardiology 2021
ISSN
2325-887X
Periodikum
Computing in Cardiology
Stát
Spojené státy americké
Strany od
1
Strany do
4
Strany počet
URL
https://www.cinc.org/archives/2021/pdf/CinC2021-179.pdf
BibTex
@inproceedings{BUT173259, author="Petra {Novotná} and Tomáš {Vičar} and Jakub {Hejč} and Marina {Filipenská}", title="Deep-Learning Premature Contraction Localization Using Gaussian Based Predicted Data", booktitle="Computing in Cardiology 2021", year="2021", journal="Computing in Cardiology", pages="1--4", publisher="Computing in Cardiology 2021", doi="10.22489/CinC.2021.179", issn="2325-887X", url="https://www.cinc.org/archives/2021/pdf/CinC2021-179.pdf" }