Detail publikace

Absolute Stability of Neutral Systems with Lurie Type Nonlinearity

DIBLÍK, J. KHUSAINOV, D. SHATYRKO, A. BAŠTINEC, J. SVOBODA, Z.

Originální název

Absolute Stability of Neutral Systems with Lurie Type Nonlinearity

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

The paper studies absolute stability of neutral differential nonlinear systems (x) over dot (t) = Ax (T) + Bx (t - tau) +D(x) over dot (T - tau) + bf (sigma(t)), sigma(t) = c(T) x(t), t >= 0 where x is an unknown vector, A, B and D are constant matrices, b and c are column constant vectors, tau > 0 is a constant delay and f is a Lurie-type nonlinear function satisfying Lipschitz condition. Absolute stability is analyzed by a general Lyapunov-Krasovskii functional with the results compared with those previously known.

Klíčová slova

Absolute stability; exponential stability; neutral differential system; Lurie type nonlinearity

Autoři

DIBLÍK, J.; KHUSAINOV, D.; SHATYRKO, A.; BAŠTINEC, J.; SVOBODA, Z.

Vydáno

1. 1. 2022

Nakladatel

De Gruyter

ISSN

2191-950X

Periodikum

Advances in Nonlinear Analysis

Ročník

11

Číslo

1

Stát

Spolková republika Německo

Strany od

726

Strany do

740

Strany počet

15

URL

Plný text v Digitální knihovně

BibTex

@article{BUT175471,
  author="Josef {Diblík} and Denys Ya. {Khusainov} and Andrej {Shatyrko} and Jaromír {Baštinec} and Zdeněk {Svoboda}",
  title="Absolute Stability of Neutral Systems with Lurie Type Nonlinearity",
  journal="Advances in Nonlinear Analysis",
  year="2022",
  volume="11",
  number="1",
  pages="726--740",
  doi="10.1515/anona-2021-0216",
  issn="2191-950X",
  url="https://www.degruyter.com/document/doi/10.1515/anona-2021-0216/html"
}