Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŽMOLÍKOVÁ, K. DELCROIX, M. BURGET, L. NAKATANI, T. ČERNOCKÝ, J.
Originální název
Integration of Variational Autoencoder and Spatial Clustering for Adaptive Multi-Channel Neural Speech Separation
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In this paper, we propose a method combining variational autoencodermodel of speech with a spatial clustering approach for multichannelspeech separation. The advantage of integrating spatial clusteringwith a spectral model was shown in several works. As thespectral model, previous works used either factorial generative modelsof the mixed speech or discriminative neural networks. In ourwork, we combine the strengths of both approaches, by building afactorial model based on a generative neural network, a variationalautoencoder. By doing so, we can exploit the modeling power ofneural networks, but at the same time, keep a structured model. Sucha model can be advantageous when adapting to new noise conditionsas only the noise part of the model needs to be modified. We showexperimentally, that our model significantly outperforms previousfactorial model based on Gaussian mixture model (DOLPHIN), performscomparably to integration of permutation invariant trainingwith spatial clustering, and enables us to easily adapt to new noiseconditions.
Klíčová slova
Multi-channel speech separation, variational autoencoder,spatial clustering, DOLPHIN
Autoři
ŽMOLÍKOVÁ, K.; DELCROIX, M.; BURGET, L.; NAKATANI, T.; ČERNOCKÝ, J.
Vydáno
19. 1. 2021
Nakladatel
IEEE Signal Processing Society
Místo
Shenzhen - virtual
ISBN
978-1-7281-7066-4
Kniha
2021 IEEE Spoken Language Technology Workshop, SLT 2021 - Proceedings
Strany od
889
Strany do
896
Strany počet
8
URL
https://ieeexplore.ieee.org/document/9383612
BibTex
@inproceedings{BUT175809, author="Kateřina {Žmolíková} and Marc {Delcroix} and Lukáš {Burget} and Tomohiro {Nakatani} and Jan {Černocký}", title="Integration of Variational Autoencoder and Spatial Clustering for Adaptive Multi-Channel Neural Speech Separation", booktitle="2021 IEEE Spoken Language Technology Workshop, SLT 2021 - Proceedings", year="2021", pages="889--896", publisher="IEEE Signal Processing Society", address="Shenzhen - virtual", doi="10.1109/SLT48900.2021.9383612", isbn="978-1-7281-7066-4", url="https://ieeexplore.ieee.org/document/9383612" }
Dokumenty
zmolikova_slt2021.pdf