Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
MIN, S. FAJČÍK, M. DOČEKAL, M. ONDŘEJ, K. SMRŽ, P.
Originální název
NeurIPS 2020 EfficientQA Competition: Systems, Analyses and Lessons Learned
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
We review the EfficientQA competition from NeurIPS 2020. The competition focused on open-domain question answering (QA), where systems take natural language questions as input and return natural language answers. The aim of the competition was to build systems that can predict correct answers while also satisfying strict on-disk memory budgets. These memory budgets were designed to encourage contestants to explore the trade-off between storing retrieval corpora or the parameters of learned models. In this report, we describe the motivation and organization of the competition, review the best submissions, and analyze system predictions to inform a discussion of evaluation for open-domain QA.
Klíčová slova
question answering, QA, ODQA, efficientQA, memory, disk memory, budget, efficient parameter, retrieval corpora
Autoři
MIN, S.; FAJČÍK, M.; DOČEKAL, M.; ONDŘEJ, K.; SMRŽ, P.
Vydáno
1. 8. 2021
Nakladatel
Proceedings of Machine Learning Research
Místo
online
ISSN
2640-3498
Ročník
133
Číslo
Strany od
86
Strany do
111
Strany počet
25
URL
http://proceedings.mlr.press/v133/min21a/min21a.pdf
BibTex
@inproceedings{BUT175821, author="MIN, S. and FAJČÍK, M. and DOČEKAL, M. and ONDŘEJ, K. and SMRŽ, P.", title="NeurIPS 2020 EfficientQA Competition: Systems, Analyses and Lessons Learned", booktitle="Proceedings of the NeurIPS 2020 Competition and Demonstration Track", year="2021", series="Proceedings of Machine Learning Research", volume="133", number="133", pages="86--111", publisher="Proceedings of Machine Learning Research", address="online", issn="2640-3498", url="http://proceedings.mlr.press/v133/min21a/min21a.pdf" }