Detail publikace
Text Augmentation for Language Models in High Error Recognition Scenario
BENEŠ, K. BURGET, L.
Originální název
Text Augmentation for Language Models in High Error Recognition Scenario
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In this paper, we explore several data augmentation strategiesfor training of language models for speech recognition. Wecompare augmentation based on global error statistics withone based on unigram statistics of ASR errors and with labelsmoothingand its sampled variant. Additionally, we investigatethe stability and the predictive power of perplexity estimatedon augmented data. Despite being trivial, augmentation drivenby global substitution, deletion and insertion rates achieves thebest rescoring results. On the other hand, even though the associatedperplexity measure is stable, it gives no better predictionof the final error rate than the vanilla one. Our best augmentationscheme increases the WER improvement from second-passrescoring from 1.1% to 1.9% absolute on the CHiMe-6 challenge.
Klíčová slova
data augmentation, error simulation, languagemodeling, automatic speech recognition
Autoři
BENEŠ, K.; BURGET, L.
Vydáno
30. 8. 2021
Nakladatel
International Speech Communication Association
Místo
Brno
ISSN
1990-9772
Periodikum
Proceedings of Interspeech
Ročník
2021
Číslo
8
Stát
Francouzská republika
Strany od
1872
Strany do
1876
Strany počet
5
URL
BibTex
@inproceedings{BUT175841,
author="Karel {Beneš} and Lukáš {Burget}",
title="Text Augmentation for Language Models in High Error Recognition Scenario",
booktitle="Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH",
year="2021",
journal="Proceedings of Interspeech",
volume="2021",
number="8",
pages="1872--1876",
publisher="International Speech Communication Association",
address="Brno",
doi="10.21437/Interspeech.2021-627",
issn="1990-9772",
url="https://www.isca-speech.org/archive/interspeech_2021/benes21_interspeech.html"
}
Dokumenty