Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
LANDINI, F. PROFANT, J. DIEZ SÁNCHEZ, M. BURGET, L.
Originální název
Bayesian HMM clustering of x-vector sequences (VBx) in speaker diarization: Theory, implementation and analysis on standard tasks
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
The recently proposed VBx diarization method uses a Bayesian hidden Markov model to find speaker clusters in a sequence of x-vectors. In this work we perform an extensive comparison of performance of the VBx diarization with other approaches in the literature and we show that VBx achieves superior performance on three of the most popular datasets for evaluating diarization: CALLHOME, AMI and DIHARD II datasets. Further, we present for the first time the derivation and update formulae for the VBx model, focusing on the efficiency and simplicity of this model as compared to the previous and more complex BHMM model working on frame-by-frame standard Cepstral features. Together with this publication, we release the recipe for training the x-vector extractors used in our experiments on both wide and narrowband data, and the VBx recipes that attain state-of-the-art performance on all three datasets. Besides, we point out the lack of a standardized evaluation protocol for AMI dataset and we propose a new protocol for both Beamformed and Mix-Headset audios based on the official AMI partitions and transcriptions.
Klíčová slova
Speaker diarization, Variational Bayes, HMM, x-vector, AMI
Autoři
LANDINI, F.; PROFANT, J.; DIEZ SÁNCHEZ, M.; BURGET, L.
Vydáno
1. 1. 2022
ISSN
0885-2308
Periodikum
COMPUTER SPEECH AND LANGUAGE
Ročník
71
Číslo
101254
Stát
Spojené království Velké Británie a Severního Irska
Strany od
1
Strany do
16
Strany počet
URL
https://www.sciencedirect.com/science/article/pii/S0885230821000619
BibTex
@article{BUT175852, author="Federico Nicolás {Landini} and Ján {Profant} and Mireia {Diez Sánchez} and Lukáš {Burget}", title="Bayesian HMM clustering of x-vector sequences (VBx) in speaker diarization: Theory, implementation and analysis on standard tasks", journal="COMPUTER SPEECH AND LANGUAGE", year="2022", volume="71", number="101254", pages="1--16", doi="10.1016/j.csl.2021.101254", issn="0885-2308", url="https://www.sciencedirect.com/science/article/pii/S0885230821000619" }