Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
FAJČÍK, M. DOČEKAL, M. ONDŘEJ, K. SMRŽ, P.
Originální název
R2-D2: A Modular Baseline for Open-Domain Question Answering
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This work presents a novel four-stage open-domain QA pipeline R2-D2 (Rank twice, reaD twice). The pipeline is composed of a retriever, passage reranker, extractive reader, generative reader and a mechanism that aggregates the final prediction from all systems components. We demonstrate its strength across three open-domain QA datasets: NaturalQuestions, TriviaQA and EfficientQA, surpassing state-of-the-art on the first two. Our analysis demonstrates that: (i) combining extractive and generative reader yields absolute improvements up to 5 exact match and it is at least twice as effective as the posterior averaging ensemble of the same models with different parameters, (ii) the extractive reader with fewer parameters can match the performance of the generative reader on extractive QA datasets.
Klíčová slova
question answering, QA, ODQA, ensemble modeling, retrieval corpora
Autoři
FAJČÍK, M.; DOČEKAL, M.; ONDŘEJ, K.; SMRŽ, P.
Vydáno
11. 11. 2021
Nakladatel
Association for Computational Linguistics
Místo
Punta Cana
ISBN
978-1-955917-10-0
Kniha
Findings of the Association for Computational Linguistics: EMNLP 2021
Edice
Findings of the Association for Computational Linguistics
Strany od
854
Strany do
870
Strany počet
17
URL
https://aclanthology.org/2021.findings-emnlp.73.pdf
BibTex
@inproceedings{BUT175855, author="Martin {Fajčík} and Martin {Dočekal} and Karel {Ondřej} and Pavel {Smrž}", title="R2-D2: A Modular Baseline for Open-Domain Question Answering", booktitle="Findings of the Association for Computational Linguistics: EMNLP 2021", year="2021", series="Findings of the Association for Computational Linguistics", pages="854--870", publisher="Association for Computational Linguistics", address="Punta Cana", isbn="978-1-955917-10-0", url="https://aclanthology.org/2021.findings-emnlp.73.pdf" }