Detail publikace

Mathematical Modelling in Crop Production to Predict Crop Yields

Sadenova, M.A., Beisekenov, N.A., Rakhymberdina, M., Varbanov, P.S., Klemeš, J.J.

Originální název

Mathematical Modelling in Crop Production to Predict Crop Yields

Typ

článek v časopise ve Scopus, Jsc

Jazyk

angličtina

Originální abstrakt

In this study, for remote recognition of crops of agroecosystems in Kazakhstan by methods of comparative and historical analogy with the active use of mathematical modelling, the yield indicator of agricultural crops was determined, their dynamic characteristics were studied to predict productivity. The parameters of the dynamicstatistical biomass model were determined separately for each region of the Republic of Kazakhstan based on training data for 21 y (2000 - 2021). The correlation coefficient between the calculated yield values and the official statistics is 0.84. According to the results of cross-validation, the correlation coefficient between the actual and predicted yield of spring wheat was ∼0.70, which indicates a sufficient resistance of the model to the variability of meteorological conditions for the formation of the crop. © 2021, AIDIC Servizi S.r.l.

Klíčová slova

mathematical; modelling; crop; production; predict; crop yields

Autoři

Sadenova, M.A., Beisekenov, N.A., Rakhymberdina, M., Varbanov, P.S., Klemeš, J.J.

Vydáno

15. 11. 2021

Nakladatel

Italian Association of Chemical Engineering - AIDIC

ISSN

2283-9216

Periodikum

Chemical Engineering Transactions

Číslo

88

Stát

Italská republika

Strany od

1225

Strany do

1230

Strany počet

6

URL

BibTex

@article{BUT175971,
  author="Petar Sabev {Varbanov} and Jiří {Klemeš}",
  title="Mathematical Modelling in Crop Production to Predict Crop Yields",
  journal="Chemical Engineering Transactions",
  year="2021",
  number="88",
  pages="1225--1230",
  doi="10.3303/CET2188204",
  issn="2283-9216",
  url="http://www.cetjournal.it/cet/21/88/204.pdf"
}