Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
NYKRÝNOVÁ, M. JAKUBÍČEK, R. BARTOŇ, V. BEZDÍČEK, M. LENGEROVÁ, M. ŠKUTKOVÁ, H.
Originální název
Using deep learning for gene detection and classification in raw nanopore signals
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Recently, nanopore sequencing has come to the fore as library preparation is rapid and simple, sequencing can be done almost anywhere, and longer reads are obtained than with next-generation sequencing. The main bottleneck still lies in data postprocessing which consists of basecalling, genome assembly, and localizing significant sequences, which is time consuming and computationally demanding, thus prolonging delivery of crucial results for clinical practice. Here, we present a neural network-based method capable of detecting and classifying specific genomic regions already in raw nanopore signals—squiggles. Therefore, the basecalling process can be omitted entirely as the raw signals of significant genes, or intergenic regions can be directly analyzed, or if the nucleotide sequences are required, the identified squiggles can be basecalled, preferably to others. The proposed neural network could be included directly in the sequencing run, allowing real-time squiggle processing.
Klíčová slova
nanopore sequencing; squiggles; neural network; MLST; bacterial typing
Autoři
NYKRÝNOVÁ, M.; JAKUBÍČEK, R.; BARTOŇ, V.; BEZDÍČEK, M.; LENGEROVÁ, M.; ŠKUTKOVÁ, H.
Vydáno
15. 9. 2022
Nakladatel
Frontiers Media SA
ISSN
1664-302X
Periodikum
Frontiers in Microbiology
Ročník
13
Číslo
1
Stát
Švýcarská konfederace
Strany od
Strany do
11
Strany počet
URL
https://www.frontiersin.org/articles/10.3389/fmicb.2022.942179/full
Plný text v Digitální knihovně
http://hdl.handle.net/11012/208454
BibTex
@article{BUT177652, author="Markéta {Jakubíčková} and Roman {Jakubíček} and Vojtěch {Bartoň} and Matěj {Bezdíček} and Martina {Lengerová} and Helena {Vítková}", title="Using deep learning for gene detection and classification in raw nanopore signals", journal="Frontiers in Microbiology", year="2022", volume="13", number="1", pages="1--11", doi="10.3389/fmicb.2022.942179", issn="1664-302X", url="https://www.frontiersin.org/articles/10.3389/fmicb.2022.942179/full" }