Detail publikace

Vanishing solutions of a second-order discrete non-linear equation of Emden-Fowler type.

DIBLÍK, J. KOROBKO, E.

Originální název

Vanishing solutions of a second-order discrete non-linear equation of Emden-Fowler type.

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

The paper discusses a discrete equation of an Emden-Fowler type $\Delta^2 v(k) = -k^3(\Delta v(k))^3$, where $v$ is a dependent variable, $k$ is an integer-valued independent variable, $\Delta$ v and $\Delta^2 v$ are the first and second-order forward differences of $v$, respectively. The paper aims to prove the existence of a nontrivial and vanishing solution for $k \to \infty$. The equation is transformed into a system of two first-order difference equations, which makes it possible to apply previously known results when investigating the system.

Klíčová slova

difference equation; Emden-Fowler type equation; asymptotic behaviour

Autoři

DIBLÍK, J.; KOROBKO, E.

Vydáno

26. 4. 2022

Nakladatel

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

Místo

Brno

ISBN

978-80-214-6029-4

Kniha

Proceedings I of the 28th Conference STUDENT EEICT 2022 General papers

Edice

1

ISSN

2788-1334

Periodikum

Proceedings II of the Conference STUDENT EEICT

Stát

Česká republika

Strany od

363

Strany do

367

Strany počet

5

URL

BibTex

@inproceedings{BUT178253,
  author="Josef {Diblík} and Evgeniya {Korobko}",
  title="Vanishing solutions of a second-order discrete non-linear equation
of Emden-Fowler type.",
  booktitle="Proceedings I of the 28th Conference STUDENT EEICT 2022 General papers",
  year="2022",
  series="1",
  journal="Proceedings II of the Conference STUDENT EEICT",
  pages="363--367",
  publisher="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií",
  address="Brno",
  isbn="978-80-214-6029-4",
  issn="2788-1334",
  url="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2022_sbornik_1_v2.pdf"
}