Detail publikace

Numerical simulations of mass transfer prediction in a photobioreactor

REBEJ, M. VONDÁL, J. JUŘENA, T. BRUMMER, V. JEGLA, Z. NAĎ, M.

Originální název

Numerical simulations of mass transfer prediction in a photobioreactor

Typ

článek v časopise ve Scopus, Jsc

Jazyk

angličtina

Originální abstrakt

The paper deals with the possibility of using flue gas as a nutrient source for microalgae cultivation in a bubble column photobioreactor. The experiments performed on a vertical tubular photobioreactor determined the concentrations of the flue gas species that pass from the flue gas into the cultivation medium. The flue gas used for experiments was a gas mixture of different pollutants, e.g. SOx, NOx, or CO2, with a composition typical for waste-to-energy facilities. The paper is supplementary to the laboratory experiments. The objective of the multiphase CFD analysis is to develop the numerical model for mass transfer predictions in photobioreactors. The model employs the Henry’s law for interphase equilibrium and the penetration model for the mass transfer coefficient.

Klíčová slova

Photobioreactor;Multiphase fluid flow;Mass transfer;CFD;Bubble diameter

Autoři

REBEJ, M.; VONDÁL, J.; JUŘENA, T.; BRUMMER, V.; JEGLA, Z.; NAĎ, M.

Vydáno

5. 6. 2022

Nakladatel

AIDIC Servizi Srl

Místo

Milan, Italy

ISBN

978-88-95608-91-4

Kniha

Chemical engineering transactions

Edice

93

ISSN

2283-9216

Periodikum

Chemical Engineering Transactions

Ročník

93

Číslo

1

Stát

Italská republika

Strany od

127

Strany do

132

Strany počet

6

URL

BibTex

@article{BUT178282,
  author="Miroslav {Rebej} and Jiří {Vondál} and Tomáš {Juřena} and Vladimír {Brummer} and Zdeněk {Jegla} and Martin {Naď}",
  title="Numerical simulations of mass transfer prediction in a photobioreactor",
  journal="Chemical Engineering Transactions",
  year="2022",
  volume="93",
  number="1",
  pages="127--132",
  doi="10.3303/CET2293022",
  issn="2283-9216",
  url="https://www.cetjournal.it/index.php/cet/article/view/CET2293022"
}