Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
DIBLÍK, J.
Originální název
Bounded solutions to systems of fractional discrete equations
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
The article is concerned with systems of fractional discrete equations Delta(alpha)x(n + 1) = F-n(n, x(n), x(n - 1), ..., x(n(0))), n = n(0), n(0) + 1, ..., where n(0) is an element of Z , n is an independent variable, Delta(alpha) is an alpha-order fractional difference, alpha is an element of R, F-n : {n} x Rn-n0+1 -> R-s, S >= 1 is a fixed integer, and x : {n(0), n(0) + 1, ...} -> R-s is a dependent (unknown) variable. A retract principle is used to prove the existence of solutions with graphs remaining in a given domain for every n >= n(0), which then serves as a basis for further proving the existence of bounded solutions to a linear nonhomogeneous system of discrete equations Delta(alpha)x(n + 1) = A(n)x(n) + delta(n), n = n(0), n(0) + 1, ..., where A(n) is a square matrix and delta(n) is a vector function. Illustrative examples accompany the statements derived, possible generalizations are discussed, and open problems for future research are formulated as well.
Klíčová slova
Fractional discrete difference; asymptotic behavior; system of fractional discrete equations; estimates of solutions
Autoři
Vydáno
19. 7. 2022
Nakladatel
De Gruyter
ISSN
2191-950X
Periodikum
Advances in Nonlinear Analysis
Ročník
11
Číslo
1
Stát
Spolková republika Německo
Strany od
1614
Strany do
1630
Strany počet
17
URL
https://www.degruyter.com/document/doi/10.1515/anona-2022-0260/html
Plný text v Digitální knihovně
http://hdl.handle.net/11012/208201
BibTex
@article{BUT178596, author="Josef {Diblík}", title="Bounded solutions to systems of fractional discrete equations", journal="Advances in Nonlinear Analysis", year="2022", volume="11", number="1", pages="1614--1630", doi="10.1515/anona-2022-0260", issn="2191-950X", url="https://www.degruyter.com/document/doi/10.1515/anona-2022-0260/html" }