Detail publikace

Optimized fractional-order Butterworth filter design in complex F-plane

MAHATA, S. HERENCSÁR, N. KUBÁNEK, D. GÖKNAR, I. C.

Originální název

Optimized fractional-order Butterworth filter design in complex F-plane

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

This paper introduces a new technique to optimally design the fractional-order Butterworth low-pass filter in the complex F-plane. Design stability is assured by incorporating the critical phase angle as an inequality constraint. The poles of the proposed approximants reside on the unit circle in the stable region of the F-plane. The improved accuracy of the suggested scheme as compared to the recently published literature is demonstrated. A mixed-integer genetic algorithm which considers the parallel combinations of resistors and capacitors for the Valsa network is used to optimize the frequency responses of the fractional-order capacitor emulators as part of the experimental verification using the Sallen-Key filter topology. The total harmonic distortion and spurious-free dynamic range of the practical 1.5th-order Butterwoth filter are measured as 0.13% and 62.18 dBc, respectively; the maximum and mean absolute relative magnitude errors are 0.03929 and 0.02051, respectively.

Klíčová slova

Fractional-order system (primary); Analog filter approximation; F-domain; Fractional-order capacitor; Constrained optimization; Fractional-order Butterworth filter; Stability

Autoři

MAHATA, S.; HERENCSÁR, N.; KUBÁNEK, D.; GÖKNAR, I. C.

Vydáno

15. 9. 2022

Nakladatel

SPRINGERNATURE

Místo

LONDON

ISSN

1311-0454

Periodikum

Fractional Calculus and Applied Analysis

Ročník

25

Číslo

5

Stát

Bulharská republika

Strany od

1

Strany do

17

Strany počet

17

URL

Plný text v Digitální knihovně

BibTex

@article{BUT179137,
  author="Shibendu {Mahata} and Norbert {Herencsár} and David {Kubánek} and Izzet Cem {Göknar}",
  title="Optimized fractional-order Butterworth filter design in complex F-plane",
  journal="Fractional Calculus and Applied Analysis",
  year="2022",
  volume="25",
  number="5",
  pages="17",
  doi="10.1007/s13540-022-00081-9",
  issn="1311-0454",
  url="https://link.springer.com/article/10.1007/s13540-022-00081-9"
}