Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KÉPEŠ, E. VRÁBEL, J. POŘÍZKA, P. KAISER, J.
Originální název
Improving laser-induced breakdown spectroscopy regression models via transfer learning
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Laser-induced breakdown spectroscopy (LIBS) is a well-established analytical tool with relevance in extra-terrestrial exploration. Despite considerable efforts towards the development of calibration-free LIBS approaches, these are currently outperformed by calibration-based approaches to semi-quantitative LIBS analyses. However, the construction of robust calibration models often requires large calibration datasets owing to the extensive matrix effects plaguing the LIBS performance. Moreover, LIBS data are sensitive to changes in the apparatus. Hence, a calibration model constructed for one LIBS system is seldom applicable to a distinct LIBS system. A notable example are the LIBS instruments included in the currently active Mars Rovers' analytical suites, the ChemCam and SuperCam LIBS instruments; while the two instruments exhibit relatively small differences, they required the collection of two separate calibration datasets. Currently, these two datasets are used exclusively for the system they were collected for. In this work, we demonstrate that calibration models constructed for the SuperCam instrument can be improved using data obtained with the ChemCam instrument. Namely, we take advantage of the partial overlap between the targets used to collect the two calibration datasets. Using this overlap, we approximate the function transforming ChemCam spectra into their SuperCam equivalent. Subsequently, the transformed spectra are used to extend the training data available for the regression model constructed for the SuperCam instrument. The proposed approach considerably improves the performance of convolutional neural network regression models.
Klíčová slova
SUPPORT VECTOR MACHINES; CHEMCAM INSTRUMENT; NEURAL-NETWORKS; CCD DETECTORS; ALLOY-STEEL; LIBS; TEMPERATURE; SCIENCE; SYSTEM; SAMPLE
Autoři
KÉPEŠ, E.; VRÁBEL, J.; POŘÍZKA, P.; KAISER, J.
Vydáno
31. 8. 2022
Nakladatel
ROYAL SOC CHEMISTRY
Místo
CAMBRIDGE
ISSN
1364-5544
Periodikum
Journal of Analytical Atomic Spectrometry
Ročník
37
Číslo
9
Stát
Spojené království Velké Británie a Severního Irska
Strany od
1883
Strany do
1893
Strany počet
11
URL
https://pubs.rsc.org/en/content/articlelanding/2022/JA/D2JA00180B
BibTex
@article{BUT179168, author="Erik {Képeš} and Jakub {Vrábel} and Pavel {Pořízka} and Jozef {Kaiser}", title="Improving laser-induced breakdown spectroscopy regression models via transfer learning", journal="Journal of Analytical Atomic Spectrometry", year="2022", volume="37", number="9", pages="1883--1893", doi="10.1039/d2ja00180b", issn="1364-5544", url="https://pubs.rsc.org/en/content/articlelanding/2022/JA/D2JA00180B" }