Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
DOČEKAL, M. SMRŽ, P.
Originální název
Query-Based Keyphrase Extraction from Long Documents
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Transformer-based architectures in natural language processing force input size limits that can be problematic when long documents need to be processed. This paper overcomes this issue for keyphrase extraction by chunking the long documents while keeping a global context as a query defining the topic for which relevant keyphrases should be extracted. The developed system employs a pre-trained BERT model and adapts it to estimate the probability that a given text span forms a keyphrase. We experimented using various context sizes on two popular datasets, Inspec and SemEval, and a large novel dataset. The presented results show that a shorter context with a query overcomes a longer one without the query on long documents.
Klíčová slova
keyphrase,keyword,long documents,query-based keyphrase extraction,BERT,transformer
Autoři
DOČEKAL, M.; SMRŽ, P.
Vydáno
4. 5. 2022
Nakladatel
LibraryPress@UF
Místo
Jensen Beach
ISSN
2334-0762
Ročník
2022
Číslo
35
Strany od
1
Strany do
4
Strany počet
URL
https://journals.flvc.org/FLAIRS/article/view/130737
BibTex
@inproceedings{BUT179282, author="Martin {Dočekal} and Pavel {Smrž}", title="Query-Based Keyphrase Extraction from Long Documents", booktitle="The International FLAIRS Conference Proceedings", year="2022", series="2022", volume="2022", number="35", pages="1--4", publisher="LibraryPress@UF", address="Jensen Beach", doi="10.32473/flairs.v35i.130737", issn="2334-0762", url="https://journals.flvc.org/FLAIRS/article/view/130737" }