Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
FRIML, D. VÁCLAVEK, P.
Originální název
Bayesian Inference of Total Least-Squares With Known Precision
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This paper provides a Bayesian analysis of the total least-squares problem with independent Gaussian noise of known variance. It introduces a derivation of the likelihood density function, conjugate prior probability-density function, and the posterior probability-density function. All in the shape of the Bingham distribution, introducing an unrecognized connection between orthogonal least-squares methods and directional analysis. The resulting Bayesian inference expands on available methods with statistical results. A recursive statistical identification algorithm of errors-in-variables models is laid- out. An application of the introduced inference is presented using a simulation example, emulating part of the identification process of linear permanent magnet synchronous motor drive parameters. The paper represents a crucial step towards enabling Bayesian statistical methods for problems with errors in variables.
Klíčová slova
Bayesian networks; Gaussian noise (electronic); Inference engines; Least squares approximations; Permanent magnets
Autoři
FRIML, D.; VÁCLAVEK, P.
Vydáno
6. 9. 2022
Nakladatel
IEEE
ISBN
978-1-66-546761-2
Kniha
Proceedings of the IEEE Conference on Decision and Control
Strany od
1
Strany do
6
Strany počet
URL
https://ieeexplore.ieee.org/document/9992409
Plný text v Digitální knihovně
http://hdl.handle.net/11012/209144
BibTex
@inproceedings{BUT180119, author="Dominik {Friml} and Pavel {Václavek}", title="Bayesian Inference of Total Least-Squares With Known Precision", booktitle="Proceedings of the IEEE Conference on Decision and Control", year="2022", pages="6", publisher="IEEE", doi="10.1109/CDC51059.2022.9992409", isbn="978-1-66-546761-2", url="https://ieeexplore.ieee.org/document/9992409" }