Detail publikace

Tameness in generalized metric structures

ROSICKÝ, J. LIEBERMAN, M. ZAMBRANO, P.

Originální název

Tameness in generalized metric structures

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

We broaden the framework of metric abstract elementary classes (mAECs) in several essential ways, chiefly by allowing the metric to take values in a well-behaved quantale. As a proof of concept we show that the result of Boney and Zambrano (Around the set-theoretical consistency of d-tameness of metric abstract elementary classes, arXiv:1508.05529, 2015) on (metric) tameness under a large cardinal assumption holds in this more general context. We briefly consider a further generalization to partial metric spaces, and hint at connections to classes of fuzzy structures, and structures on sheaves.

Klíčová slova

Abstract model theory; Metric abstract elementary classes; Metric structures; Quantales; Quantale-valued metrics; Tameness

Autoři

ROSICKÝ, J.; LIEBERMAN, M.; ZAMBRANO, P.

Vydáno

22. 10. 2022

Nakladatel

SPRINGER HEIDELBERG

Místo

HEIDELBERG

ISSN

1432-0665

Periodikum

ARCHIVE FOR MATHEMATICAL LOGIC

Ročník

22.10.2022

Číslo

22.10.2022

Stát

Spolková republika Německo

Strany počet

28

URL

BibTex

@article{BUT180123,
  author="Jiří {Rosický} and Michael Joseph {Lieberman} and Pedro {Zambrano}",
  title="Tameness in generalized metric structures",
  journal="ARCHIVE FOR MATHEMATICAL LOGIC",
  year="2022",
  volume="22.10.2022",
  number="22.10.2022",
  pages="28",
  doi="10.1007/s00153-022-00852-4",
  issn="1432-0665",
  url="https://link.springer.com/article/10.1007/s00153-022-00852-4"
}