Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ROSICKÝ, J. LIEBERMAN, M. ZAMBRANO, P.
Originální název
Tameness in generalized metric structures
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We broaden the framework of metric abstract elementary classes (mAECs) in several essential ways, chiefly by allowing the metric to take values in a well-behaved quantale. As a proof of concept we show that the result of Boney and Zambrano (Around the set-theoretical consistency of d-tameness of metric abstract elementary classes, arXiv:1508.05529, 2015) on (metric) tameness under a large cardinal assumption holds in this more general context. We briefly consider a further generalization to partial metric spaces, and hint at connections to classes of fuzzy structures, and structures on sheaves.
Klíčová slova
Abstract model theory; Metric abstract elementary classes; Metric structures; Quantales; Quantale-valued metrics; Tameness
Autoři
ROSICKÝ, J.; LIEBERMAN, M.; ZAMBRANO, P.
Vydáno
22. 10. 2022
Nakladatel
SPRINGER HEIDELBERG
Místo
HEIDELBERG
ISSN
1432-0665
Periodikum
ARCHIVE FOR MATHEMATICAL LOGIC
Ročník
22.10.2022
Číslo
Stát
Spolková republika Německo
Strany počet
28
URL
https://link.springer.com/article/10.1007/s00153-022-00852-4
BibTex
@article{BUT180123, author="Jiří {Rosický} and Michael Joseph {Lieberman} and Pedro {Zambrano}", title="Tameness in generalized metric structures", journal="ARCHIVE FOR MATHEMATICAL LOGIC", year="2022", volume="22.10.2022", number="22.10.2022", pages="28", doi="10.1007/s00153-022-00852-4", issn="1432-0665", url="https://link.springer.com/article/10.1007/s00153-022-00852-4" }