Detail publikace

Unsupervised Anomaly Detection Using Bidirectional GRU Autoencoder Neural Network for PLOAM Message Sequence Analysis in GPON

HORVÁTH, T. TOMAŠOV, A. MÜNSTER, P. DEJDAR, P. OUJEZSKÝ, V.

Originální název

Unsupervised Anomaly Detection Using Bidirectional GRU Autoencoder Neural Network for PLOAM Message Sequence Analysis in GPON

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

This paper proposes an autoencoder neural network based on bidirectional gated recurrent unit layers used for anomaly detection in sequences of management protocol messages in gigabit-capable passive optical networks (GPONs). The autoencoder uses unsupervised learning, and the learning dataset is acquired from the real GPON network using a custom-made analyzer. The anomaly detection focuses on deviations in the management protocol in comparison to the baseline. It may indicate changes in the protocol itself caused by a different protocol implementation or a potential attack on the network. The capabilities of a trained autoencoder are evaluated on a generated dataset with various types of anomalies. The autoencoder reaches an average accuracy of 66% across all types of generated anomalies. However, the detection accuracy of sequences containing a high amount of random noise is 100%.

Klíčová slova

Anomaly detection, Autoencoder;Gated recurrent unit;Neural network;Passive optical networks;PLOAM, Unsupervised learning

Autoři

HORVÁTH, T.; TOMAŠOV, A.; MÜNSTER, P.; DEJDAR, P.; OUJEZSKÝ, V.

Vydáno

16. 11. 2022

Nakladatel

Institute of Electrical and Electronics Engineers (IEEE)

Místo

Malé, Maldives

ISBN

978-1-6654-7095-7

Kniha

2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME 2022)

Strany od

1

Strany do

5

Strany počet

5

URL

BibTex

@inproceedings{BUT180199,
  author="Tomáš {Horváth} and Adrián {Tomašov} and Petr {Münster} and Petr {Dejdar} and Václav {Oujezský}",
  title="Unsupervised Anomaly Detection Using Bidirectional GRU Autoencoder Neural Network for PLOAM Message Sequence Analysis in GPON",
  booktitle="2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME 2022)",
  year="2022",
  pages="1--5",
  publisher="Institute of Electrical and Electronics Engineers (IEEE)",
  address="Malé, Maldives",
  doi="10.1109/ICECCME55909.2022.9988508",
  isbn="978-1-6654-7095-7",
  url="https://ieeexplore.ieee.org/document/9988508"
}