Detail publikace

Geodesic mappings onto generalized m-Ricci-symmetric spaces

BEREZOVSKI, V. CHEREVKO, Y. HINTERLEITNER, I. PEŠKA, P.

Originální název

Geodesic mappings onto generalized m-Ricci-symmetric spaces

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

In this paper, we study geodesic mappings of spaces with affine connections onto generalized 2-, 3-, and m-Ricci-symmetric spaces. In either case, the main equations for the mappings are obtained as a closed system of linear differential equations of the Cauchy type in the covariant derivatives. For the systems, we have found the maximum number of essential parameters on which the solutions depend. These results generalize the properties of geodesic mappings onto symmetric, recurrent, and also 2-, 3-, and m-(Ricci-)symmetric spaces with affine connections.

Klíčová slova

geodesic mapping; space with affine connections; m-Ricci-symmetric space; Cauchy-type differential equations

Autoři

BEREZOVSKI, V.; CHEREVKO, Y.; HINTERLEITNER, I.; PEŠKA, P.

Vydáno

21. 6. 2022

Nakladatel

MDPI

Místo

Basel

ISSN

2227-7390

Periodikum

Mathematics

Ročník

10

Číslo

13

Stát

Švýcarská konfederace

Strany od

1

Strany do

12

Strany počet

12

URL

Plný text v Digitální knihovně

BibTex

@article{BUT182470,
  author="Vladimir {Berezovski} and Yevhen {Cherevko} and Irena {Hinterleitner} and Patrik {Peška}",
  title="Geodesic mappings onto generalized m-Ricci-symmetric spaces",
  journal="Mathematics",
  year="2022",
  volume="10",
  number="13",
  pages="1--12",
  doi="10.3390/math10132165",
  issn="2227-7390",
  url="https://www.mdpi.com/2227-7390/10/13/2165/htm"
}