Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŠŮSTEK, M. SADHU, S. HEŘMANSKÝ, H.
Originální název
Dealing with Unknowns in Continual Learning for End-to-end Automatic Speech Recognition
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Learning continually from data is a task executed effortlessly by humans but remains to be of significant challenge for machines. Moreover, when encountering unknown test scenarios machines fail to generalize. We propose a mathematically motivated dynamically expanding end-to-end model of independent sequence-to-sequence components trained on different data sets that avoid catastrophically forgetting knowledge acquired from previously seen data while seamlessly integrating knowledge from new data. During inference, the likelihoods of the unknown test scenario are computed using internal model activation distributions. The inference made by each independent component is weighted by the normalized likelihood values to obtain the final decision.
Klíčová slova
continual learning, multistream speech recognition, speech recognition
Autoři
ŠŮSTEK, M.; SADHU, S.; HEŘMANSKÝ, H.
Vydáno
1. 9. 2022
Nakladatel
International Speech Communication Association
Místo
Incheon
ISSN
1990-9772
Periodikum
Proceedings of Interspeech
Ročník
2022
Číslo
9
Stát
Francouzská republika
Strany od
1046
Strany do
1050
Strany počet
5
URL
https://www.isca-speech.org/archive/pdfs/interspeech_2022/sustek22_interspeech.pdf
BibTex
@inproceedings{BUT182527, author="ŠŮSTEK, M. and SADHU, S. and HEŘMANSKÝ, H.", title="Dealing with Unknowns in Continual Learning for End-to-end Automatic Speech Recognition", booktitle="Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH", year="2022", journal="Proceedings of Interspeech", volume="2022", number="9", pages="1046--1050", publisher="International Speech Communication Association", address="Incheon", doi="10.21437/Interspeech.2022-11139", issn="1990-9772", url="https://www.isca-speech.org/archive/pdfs/interspeech_2022/sustek22_interspeech.pdf" }