Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
JANKOVÁ, Z.
Originální název
Latent Dirichlet Allocation (LDA) Approximation Analysis of Financial-Related Text Messages
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Topic modeling is one of the most widely used NLP techniques for discovering hidden patterns and latent relationships in text documents. Latent Dirichlet Allocation (LDA) is one of the most popular methods in this field. There are different approaches to tuning the parameters of LDA models such as Gibbs sampling, variational method, or expected propagation. This paper aims to compare individual LDA parameter tuning approaches with respect to their performance and accuracy on textual data from the financial domain. From our results, it can be concluded that for text datasets obtained from financial social platforms, stochastic solvers are the most suitable and especially less time consuming than approximation methods.
Klíčová slova
Financial Messages; Latent Dirichlet Allocation; LDA; NLP; Text analysis; Topic Modeling
Autoři
Vydáno
1. 4. 2023
Nakladatel
Bucharest University of Economic Studies
Místo
Bucharest, Romania
ISSN
0424-267X
Periodikum
Economic Computation and Economic Cybernetics Studies and Research
Ročník
57
Číslo
1
Stát
Rumunsko
Strany od
267
Strany do
282
Strany počet
16
URL
https://ecocyb.ase.ro/nr2023_1/2023_1_17_ZuzanaJANKOVA_online.pdf
BibTex
@article{BUT183297, author="Zuzana {Janková}", title="Latent Dirichlet Allocation (LDA) Approximation Analysis of Financial-Related Text Messages", journal="Economic Computation and Economic Cybernetics Studies and Research", year="2023", volume="57", number="1", pages="267--282", doi="10.24818/18423264/57.1.23.17", issn="0424-267X", url="https://ecocyb.ase.ro/nr2023_1/2023_1_17_ZuzanaJANKOVA_online.pdf" }