Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
DIBLÍK, J.
Originální název
Exponential stability of linear discrete systems with multiple delays by degenerated Lyapunov-Krasovskii functionals
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
The problem of exponential stability of delayed discrete systems with multiple delays s n-ary sumation x(n + 1) = (I + A)x(n) + i=1 Bix(n - i), n = 0, 1, .. . is studied, where x = (x1 x2 ... xm)T is an unknown vector, m and s are fixed positive integers, A, Bi are square constant matrices and I is a unit matrix. A new degenerated Lyapunov-Krasovskii functional is used to derive sufficient conditions for exponential stability and to derive an exponential estimate of the norm of solutions. Though often used in the study of stability, the assumption that the spectral radius of the matrix of linear terms is less than 1 is not applied here. The criterion derived is illustrated by an example and compared with previously known results.
Klíčová slova
Exponential stability; Lyapunov-Krasovskii functional; Degenerated functional; Multiple delays; Exponential estimate; Norm
Autoři
Vydáno
1. 8. 2023
Nakladatel
PERGAMON-ELSEVIER SCIENCE LTD
Místo
OXFORD
ISSN
1873-5452
Periodikum
APPLIED MATHEMATICS LETTERS
Ročník
142
Číslo
108654
Stát
Spojené státy americké
Strany od
1
Strany do
6
Strany počet
URL
https://www.sciencedirect.com/science/article/pii/S0893965923000861?via%3Dihub
BibTex
@article{BUT183778, author="Josef {Diblík}", title="Exponential stability of linear discrete systems with multiple delays by degenerated Lyapunov-Krasovskii functionals", journal="APPLIED MATHEMATICS LETTERS", year="2023", volume="142", number="108654", pages="6", doi="10.1016/j.aml.2023.108654", issn="1873-5452", url="https://www.sciencedirect.com/science/article/pii/S0893965923000861?via%3Dihub" }