Detail publikace

Exponential stability of linear discrete systems with multiple delays by degenerated Lyapunov-Krasovskii functionals

DIBLÍK, J.

Originální název

Exponential stability of linear discrete systems with multiple delays by degenerated Lyapunov-Krasovskii functionals

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

The problem of exponential stability of delayed discrete systems with multiple delays s n-ary sumation x(n + 1) = (I + A)x(n) + i=1 Bix(n - i), n = 0, 1, .. . is studied, where x = (x1 x2 ... xm)T is an unknown vector, m and s are fixed positive integers, A, Bi are square constant matrices and I is a unit matrix. A new degenerated Lyapunov-Krasovskii functional is used to derive sufficient conditions for exponential stability and to derive an exponential estimate of the norm of solutions. Though often used in the study of stability, the assumption that the spectral radius of the matrix of linear terms is less than 1 is not applied here. The criterion derived is illustrated by an example and compared with previously known results.

Klíčová slova

Exponential stability; Lyapunov-Krasovskii functional; Degenerated functional; Multiple delays; Exponential estimate; Norm

Autoři

DIBLÍK, J.

Vydáno

1. 8. 2023

Nakladatel

PERGAMON-ELSEVIER SCIENCE LTD

Místo

OXFORD

ISSN

1873-5452

Periodikum

APPLIED MATHEMATICS LETTERS

Ročník

142

Číslo

108654

Stát

Spojené státy americké

Strany od

1

Strany do

6

Strany počet

6

URL

BibTex

@article{BUT183778,
  author="Josef {Diblík}",
  title="Exponential stability of linear discrete systems with multiple delays by degenerated Lyapunov-Krasovskii functionals",
  journal="APPLIED MATHEMATICS LETTERS",
  year="2023",
  volume="142",
  number="108654",
  pages="6",
  doi="10.1016/j.aml.2023.108654",
  issn="1873-5452",
  url="https://www.sciencedirect.com/science/article/pii/S0893965923000861?via%3Dihub"
}