Detail publikace
Multi-Peak Solutions for Coupled Nonlinear Schrodinger Systems in Low Dimensions
ZHENG, M. ZHANG, B. RADULESCU, V.
Originální název
Multi-Peak Solutions for Coupled Nonlinear Schrodinger Systems in Low Dimensions
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
In this paper, we construct the solutions to the nonlinear Schrodinger system. We construct the solution for attractive and repulsive cases. When $x_0$ is a local maximum point of the potentials P and Q and $P(x_0) = Q(x_0)$, we construct k spikes concentrating near the local maximum point $x_0$. When x_0$ is a local maximum point of P and $x^{\ bar}_ 0$ is a local maximum point of Q, we construct k spikes of $ u $ concentrating at the local maximum point $ x_0$ and m spikes of v concentrating at the local maximum point $x^{\ bar}_ 0$ when $x_0 \ not = $x^{\ bar}_ 0$ This paper extends the main results established by Peng and Wang (Arch Ration Mech Anal 208:305-339, 2013) and Peng and Pi (Discrete Contin Dyn Syst 36:2205-2227, 2016), where the authors considered the case N = 3, p = 3.
Klíčová slova
Nonlinear Schrodinger system;Lyapunov-Schmidt reduction;Singularity; Perturbation
Autoři
ZHENG, M.; ZHANG, B.; RADULESCU, V.
Vydáno
13. 6. 2023
Nakladatel
Springer Nature
ISSN
0095-4616
Periodikum
APPLIED MATHEMATICS AND OPTIMIZATION
Ročník
88
Číslo
1
Stát
Spolková republika Německo
Strany od
1
Strany do
56
Strany počet
56
URL
Plný text v Digitální knihovně
BibTex
@article{BUT183934,
author="Maoding {Zheng} and Binlin {Zhang} and Vicentiu {Radulescu}",
title="Multi-Peak Solutions for Coupled Nonlinear Schrodinger Systems in Low Dimensions",
journal="APPLIED MATHEMATICS AND OPTIMIZATION",
year="2023",
volume="88",
number="1",
pages="1--56",
doi="10.1007/s00245-023-09974-4",
issn="0095-4616",
url="https://link.springer.com/article/10.1007/s00245-023-09974-4"
}