Detail publikace

Multi-Peak Solutions for Coupled Nonlinear Schrodinger Systems in Low Dimensions

ZHENG, M. ZHANG, B. RADULESCU, V.

Originální název

Multi-Peak Solutions for Coupled Nonlinear Schrodinger Systems in Low Dimensions

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

In this paper, we construct the solutions to the nonlinear Schrodinger system. We construct the solution for attractive and repulsive cases. When $x_0$ is a local maximum point of the potentials P and Q and $P(x_0) = Q(x_0)$, we construct k spikes concentrating near the local maximum point $x_0$. When x_0$ is a local maximum point of P and $x^{\ bar}_ 0$ is a local maximum point of Q, we construct k spikes of $ u $ concentrating at the local maximum point $ x_0$ and m spikes of v concentrating at the local maximum point $x^{\ bar}_ 0$ when $x_0 \ not = $x^{\ bar}_ 0$ This paper extends the main results established by Peng and Wang (Arch Ration Mech Anal 208:305-339, 2013) and Peng and Pi (Discrete Contin Dyn Syst 36:2205-2227, 2016), where the authors considered the case N = 3, p = 3.

Klíčová slova

Nonlinear Schrodinger system;Lyapunov-Schmidt reduction;Singularity; Perturbation

Autoři

ZHENG, M.; ZHANG, B.; RADULESCU, V.

Vydáno

13. 6. 2023

Nakladatel

Springer Nature

ISSN

0095-4616

Periodikum

APPLIED MATHEMATICS AND OPTIMIZATION

Ročník

88

Číslo

1

Stát

Spolková republika Německo

Strany od

1

Strany do

56

Strany počet

56

URL

Plný text v Digitální knihovně

BibTex

@article{BUT183934,
  author="Maoding {Zheng} and Binlin {Zhang} and Vicentiu {Radulescu}",
  title="Multi-Peak Solutions for Coupled Nonlinear Schrodinger Systems in Low Dimensions",
  journal="APPLIED MATHEMATICS AND OPTIMIZATION",
  year="2023",
  volume="88",
  number="1",
  pages="1--56",
  doi="10.1007/s00245-023-09974-4",
  issn="0095-4616",
  url="https://link.springer.com/article/10.1007/s00245-023-09974-4"
}