Detail publikace

Fractional Choquard logarithmic equations with Stein-Weiss potential

SHUAI, Y. RADULESCU, V. CHEN, S. WEN, L.

Originální název

Fractional Choquard logarithmic equations with Stein-Weiss potential

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

In the present paper, we are concerned with the following fractional $ p $-Laplacian Choquard logarithmic equation. Under mild conditions and combining variational and topological methods, we obtain the existence of axially symmetric solutions both in the exponential subcritical case and in the exponential critical case. We point out that we take advantage of some refined analysis techniques to get over the difficulty carried by the competition of the Choquard logarithmic term and the Stein-Weiss nonlinearity. Moreover, in the exponential critical case, we extend the nonlinearities to more general cases compared with the existing results.

Klíčová slova

Choquard logarithmic equations;Exponential growth;Critical exponential growth;Trudinger-Moser inequality

Autoři

SHUAI, Y.; RADULESCU, V.; CHEN, S.; WEN, L.

Vydáno

1. 10. 2023

Nakladatel

Academic Press Inc.

ISSN

1096-0813

Periodikum

Journal of Mathematical Analysis and Applications

Ročník

526

Číslo

1

Stát

Spojené státy americké

Strany od

1

Strany do

45

Strany počet

45

URL

BibTex

@article{BUT183937,
  author="Yuan {Shuai} and Vicentiu {Radulescu} and Sitong {Chen} and Lixi {Wen}",
  title="Fractional Choquard logarithmic equations with Stein-Weiss potential",
  journal="Journal of Mathematical Analysis and Applications",
  year="2023",
  volume="526",
  number="1",
  pages="1--45",
  doi="10.1016/j.jmaa.2023.127214",
  issn="1096-0813",
  url="https://www.sciencedirect.com/science/article/pii/S0022247X23002172"
}