Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
SHUAI, Y. RADULESCU, V. CHEN, S. WEN, L.
Originální název
Fractional Choquard logarithmic equations with Stein-Weiss potential
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
In the present paper, we are concerned with the following fractional $ p $-Laplacian Choquard logarithmic equation. Under mild conditions and combining variational and topological methods, we obtain the existence of axially symmetric solutions both in the exponential subcritical case and in the exponential critical case. We point out that we take advantage of some refined analysis techniques to get over the difficulty carried by the competition of the Choquard logarithmic term and the Stein-Weiss nonlinearity. Moreover, in the exponential critical case, we extend the nonlinearities to more general cases compared with the existing results.
Klíčová slova
Choquard logarithmic equations;Exponential growth;Critical exponential growth;Trudinger-Moser inequality
Autoři
SHUAI, Y.; RADULESCU, V.; CHEN, S.; WEN, L.
Vydáno
1. 10. 2023
Nakladatel
Academic Press Inc.
ISSN
1096-0813
Periodikum
Journal of Mathematical Analysis and Applications
Ročník
526
Číslo
1
Stát
Spojené státy americké
Strany od
Strany do
45
Strany počet
URL
https://www.sciencedirect.com/science/article/pii/S0022247X23002172
BibTex
@article{BUT183937, author="Yuan {Shuai} and Vicentiu {Radulescu} and Sitong {Chen} and Lixi {Wen}", title="Fractional Choquard logarithmic equations with Stein-Weiss potential", journal="Journal of Mathematical Analysis and Applications", year="2023", volume="526", number="1", pages="1--45", doi="10.1016/j.jmaa.2023.127214", issn="1096-0813", url="https://www.sciencedirect.com/science/article/pii/S0022247X23002172" }