Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ČERMÁK, J. KISELA, T. NECHVÁTAL, L.
Originální název
The Lambert function method in qualitative analysis of fractional delay differential equations
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We discuss an analytical method for qualitative investigations of linear fractional delay differential equations. This method originates from the Lambert function technique that is traditionally used in stability analysis of ordinary delay differential equations. Contrary to the existing results based on such a technique, we show that the method can result into fully explicit stability criteria for a linear fractional delay differential equation, supported by a precise description of its asymptotics. As a by-product of our investigations, we also state alternate proofs of some classical assertions that are given in a more lucid form compared to the existing proofs.
Klíčová slova
Fractional delay differential equation (primary); Lambert function; Stability; Asymptotic behavior
Autoři
ČERMÁK, J.; KISELA, T.; NECHVÁTAL, L.
Vydáno
16. 6. 2023
Nakladatel
Springer Nature
Místo
CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
ISSN
1311-0454
Periodikum
Fractional Calculus and Applied Analysis
Ročník
26
Číslo
4
Stát
Bulharská republika
Strany od
1545
Strany do
1565
Strany počet
21
URL
https://link.springer.com/article/10.1007/s13540-023-00176-x
Plný text v Digitální knihovně
http://hdl.handle.net/11012/213603
BibTex
@article{BUT184060, author="Jan {Čermák} and Tomáš {Kisela} and Luděk {Nechvátal}", title="The Lambert function method in qualitative analysis of fractional delay differential equations", journal="Fractional Calculus and Applied Analysis", year="2023", volume="26", number="4", pages="1545--1565", doi="10.1007/s13540-023-00176-x", issn="1311-0454", url="https://link.springer.com/article/10.1007/s13540-023-00176-x" }