Detail publikace

The Lambert function method in qualitative analysis of fractional delay differential equations

ČERMÁK, J. KISELA, T. NECHVÁTAL, L.

Originální název

The Lambert function method in qualitative analysis of fractional delay differential equations

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

We discuss an analytical method for qualitative investigations of linear fractional delay differential equations. This method originates from the Lambert function technique that is traditionally used in stability analysis of ordinary delay differential equations. Contrary to the existing results based on such a technique, we show that the method can result into fully explicit stability criteria for a linear fractional delay differential equation, supported by a precise description of its asymptotics. As a by-product of our investigations, we also state alternate proofs of some classical assertions that are given in a more lucid form compared to the existing proofs.

Klíčová slova

Fractional delay differential equation (primary); Lambert function; Stability; Asymptotic behavior

Autoři

ČERMÁK, J.; KISELA, T.; NECHVÁTAL, L.

Vydáno

16. 6. 2023

Nakladatel

Springer Nature

Místo

CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND

ISSN

1311-0454

Periodikum

Fractional Calculus and Applied Analysis

Ročník

26

Číslo

4

Stát

Bulharská republika

Strany od

1545

Strany do

1565

Strany počet

21

URL

Plný text v Digitální knihovně

BibTex

@article{BUT184060,
  author="Jan {Čermák} and Tomáš {Kisela} and Luděk {Nechvátal}",
  title="The Lambert function method in qualitative analysis of fractional delay differential equations",
  journal="Fractional Calculus and Applied Analysis",
  year="2023",
  volume="26",
  number="4",
  pages="1545--1565",
  doi="10.1007/s13540-023-00176-x",
  issn="1311-0454",
  url="https://link.springer.com/article/10.1007/s13540-023-00176-x"
}