Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
NOHEL, M. KOLÁŘ, R.
Originální název
Segmentation of optic disc and cup in retinal images using of deep learning approaches
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
This paper presents a comparative analysis of optic disc and cup segmentation in retinal fundus images using two deep learning models: the classical U-net and its modified version, nnU-Net. The models were trained and tested on publicly available databases consisting of 1295 images for training and 555 images for testing. The results indicate that while nnU-Net demonstrated only slight improvements in disc segmentation on the test database, it significantly outperformed the U-net model in optical cup segmentation.
Klíčová slova
deep learning, convolutional neural networks, vertebrae segmentation, segmentation, spine, vertebra, CT, computed tomography
Autoři
NOHEL, M.; KOLÁŘ, R.
Vydáno
25. 4. 2023
Nakladatel
Brno University of Technology, Faculty of Electrical Engineering and Communication
Místo
Brno, Czech Republic
ISBN
978-80-214-6153-6
Kniha
Proceedings I of the 29th Conference STUDENT EEICT 2023
Edice
1st edition
Strany od
265
Strany do
269
Strany počet
5
URL
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_1.pdf
BibTex
@inproceedings{BUT184277, author="Michal {Nohel} and Radim {Kolář}", title="Segmentation of optic disc and cup in retinal images using of deep learning approaches", booktitle="Proceedings I of the 29th Conference STUDENT EEICT 2023", year="2023", series="1st edition", pages="265--269", publisher="Brno University of Technology, Faculty of Electrical Engineering and Communication", address="Brno, Czech Republic", isbn="978-80-214-6153-6", url="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_1.pdf" }