Detail publikace

Compression of Vehicle-Driving Data by Means of Orthogonal Bases

ŠIMEČEK, V. MIHÁLIK, O.

Originální název

Compression of Vehicle-Driving Data by Means of Orthogonal Bases

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

The paper deals with application of orthogonal bases in signal approximation with the aim of data compression in a vehicle driving simulator. Three different bases are tested: Discrete Fourier Basis, Discrete Cosine Basis, and Slepian Basis. Quality of signal approximation error is assessed in terms of global squared errors. Thus obtained numerical results suggest that Slepian Basis affords the sparsest representation of signals tested in this study. Therefore, a considerable reduction of required memory can be accomplished.

Klíčová slova

signal, approximation, compression, Slepian sequences, DPSS

Autoři

ŠIMEČEK, V.; MIHÁLIK, O.

Vydáno

25. 4. 2023

Nakladatel

Brno University of Technology, Faculty of Electrical Engineering and Communication

Místo

Brno

ISBN

978-80-214-6154-3

Kniha

Proceedings II of the 29 th Conference STUDENT EEICT 2023 Selected papers

Edice

1

ISSN

2788-1334

Periodikum

Proceedings II of the Conference STUDENT EEICT

Stát

Česká republika

Strany od

13

Strany do

16

Strany počet

4

URL

BibTex

@inproceedings{BUT184283,
  author="Vít {Šimeček} and Ondrej {Mihálik}",
  title="Compression of Vehicle-Driving Data by Means of Orthogonal Bases",
  booktitle="Proceedings II of the 29 th Conference STUDENT EEICT 2023 Selected papers",
  year="2023",
  series="1",
  journal="Proceedings II of the Conference STUDENT EEICT",
  pages="13--16",
  publisher="Brno University of Technology, Faculty of Electrical Engineering and Communication",
  address="Brno",
  isbn="978-80-214-6154-3",
  issn="2788-1334",
  url="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf"
}