Detail publikace

Indefinite Perturbations of the Eigenvalue Problem for the Nonautonomous p-Laplacian

RADULESCU, V. PAPAGEORGIOU, N. SUN, X.

Originální název

Indefinite Perturbations of the Eigenvalue Problem for the Nonautonomous p-Laplacian

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

We consider an indefinite perturbation of the eigenvalue problem for the nonautonomous p-Laplacian. The main result establishes an exhaustive analysis in the nontrivial case that corresponds to noncoercive perturbations of the reaction. Using variational tools and truncation and comparison techniques, we prove an existence and multiplicity theorem which is global in the parameter. The main result of this paper establishes the existence of at least two positive solutions in the case of small perturbations, while no solution exists for high perturbations of the quasilinear term in the reaction.

Klíčová slova

Nonautonomous differential operator; Eigenvalue problem, Indefinite potential; Noncoercive perturbation; Picone’s identity; Regularity and comparison results.

Autoři

RADULESCU, V.; PAPAGEORGIOU, N.; SUN, X.

Vydáno

27. 7. 2023

ISSN

1424-9294

Periodikum

Milan Journal of Mathematics

Ročník

91

Číslo

2023

Stát

Italská republika

Strany od

353

Strany do

373

Strany počet

21

URL

BibTex

@article{BUT184308,
  author="Nikolaos S. {Papageorgiou} and Vicentiu {Radulescu} and xueying {sun}",
  title="Indefinite Perturbations of the Eigenvalue Problem for the Nonautonomous p-Laplacian",
  journal="Milan Journal of Mathematics",
  year="2023",
  volume="91",
  number="2023",
  pages="353--373",
  doi="10.1007/s00032-023-00385-2",
  issn="1424-9294",
  url="https://link.springer.com/article/10.1007/s00032-023-00385-2"
}