Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
RADULESCU, V. PAPAGEORGIOU, N. SUN, X.
Originální název
Indefinite Perturbations of the Eigenvalue Problem for the Nonautonomous p-Laplacian
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We consider an indefinite perturbation of the eigenvalue problem for the nonautonomous p-Laplacian. The main result establishes an exhaustive analysis in the nontrivial case that corresponds to noncoercive perturbations of the reaction. Using variational tools and truncation and comparison techniques, we prove an existence and multiplicity theorem which is global in the parameter. The main result of this paper establishes the existence of at least two positive solutions in the case of small perturbations, while no solution exists for high perturbations of the quasilinear term in the reaction.
Klíčová slova
Nonautonomous differential operator; Eigenvalue problem, Indefinite potential; Noncoercive perturbation; Picone’s identity; Regularity and comparison results.
Autoři
RADULESCU, V.; PAPAGEORGIOU, N.; SUN, X.
Vydáno
27. 7. 2023
ISSN
1424-9294
Periodikum
Milan Journal of Mathematics
Ročník
91
Číslo
2023
Stát
Italská republika
Strany od
353
Strany do
373
Strany počet
21
URL
https://link.springer.com/article/10.1007/s00032-023-00385-2
BibTex
@article{BUT184308, author="Nikolaos S. {Papageorgiou} and Vicentiu {Radulescu} and xueying {sun}", title="Indefinite Perturbations of the Eigenvalue Problem for the Nonautonomous p-Laplacian", journal="Milan Journal of Mathematics", year="2023", volume="91", number="2023", pages="353--373", doi="10.1007/s00032-023-00385-2", issn="1424-9294", url="https://link.springer.com/article/10.1007/s00032-023-00385-2" }