Detail publikace
Blood pressure estimation using smartphone
ŠÍMA, J. NĚMCOVÁ, A.
Originální název
Blood pressure estimation using smartphone
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This paper presents an experimental cuff-less measurement of systolic (SBP) and diastolic blood pressure (DBP) using smartphone. A photoplethysmographic signal (PPG) measured by a smartphone camera is used to estimate blood pressure (BP). This paper contains comparison of several machine learning (ML) methods for BP estimation. Filtering the PPG signal with a band-pass filter (0.5-12 Hz) followed by feature extraction and using Random Forest (RF) methods separately or as a weak regressor in adaptive boosting (AdaBoost) or bootstrap aggregating (Boosting) reached the best results according to Association for the Advancement of Medical Instrumentation (AAMI) and British Hypertension Society (BHS) standards among all regression ML models. The mean absolute error (MAE) and standard deviation (SD) of Bagging model were 4.532±3.760 mmHg for SBP and 2.738±3.032 mmHg for DBP (AAMI). This result meets the criteria of the AAMI standard.
Klíčová slova
blood pressure estimation;cuff-less measurement of blood pressure;machine learning
Autoři
ŠÍMA, J.; NĚMCOVÁ, A.
Vydáno
25. 4. 2023
Nakladatel
Brno University of Technology, Faculty of Electrical Engineering and Communication
Místo
Brno
ISBN
978-80-214-6154-3
Kniha
Proceedings II of the 29 th Conference STUDENT EEICT 2023 Selected papers
Edice
1st Edition
ISSN
2788-1334
Periodikum
Proceedings II of the Conference STUDENT EEICT
Stát
Česká republika
Strany od
129
Strany do
132
Strany počet
4
URL
BibTex
@inproceedings{BUT184325,
author="Jan {Šíma} and Andrea {Němcová}",
title="Blood pressure estimation using smartphone",
booktitle="Proceedings II of the 29 th Conference STUDENT EEICT 2023 Selected papers",
year="2023",
series="1st Edition",
journal="Proceedings II of the Conference STUDENT EEICT",
pages="129--132",
publisher="Brno University of Technology, Faculty of Electrical Engineering and Communication",
address="Brno",
doi="10.13164/eeict.2023.129",
isbn="978-80-214-6154-3",
issn="2788-1334",
url="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf"
}