Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŠNAJDER, J. KREJSA, J.
Originální název
MediaPipe and Its Suitability for Sign Language Recognition
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
The paper presents the framework MediaPipe as a tool to extract pose features for the task of word-level isolated sign language recognition. It tests the framework’s suitability on the state-of-the-art sign language dataset AUTSL. Extracted sequences of pose features are classified by the Long Short-Term Memory recurrent neural network constructed with the TensorFlow computational library. The paper describes the proposed method flow, preprocessing of the extracted features, and training. Obtained results are then validated on test datasets, and the impact of face landmarks is evaluated. The top-1 accuracy with face landmarks is 49.89 %, while 53.21 % without them.
Klíčová slova
Sign language recognition; MediaPipe; Long Short-Term Memory; neural network; classification
Autoři
ŠNAJDER, J.; KREJSA, J.
Vydáno
10. 5. 2023
Nakladatel
Institute of Thermomechanics of the Czech Academy of Sciences
Místo
Prague
ISBN
ISBN 978-80-87012-84
Kniha
ENGINEERING MECHANICS 2023
Edice
First edition
Číslo edice
1
ISSN
1805-8256
Periodikum
Engineering Mechanics ....
Stát
Česká republika
Strany od
251
Strany do
254
Strany počet
4
URL
https://www.engmech.cz/improc/2023/251.pdf
BibTex
@inproceedings{BUT184379, author="Jan {Šnajder} and Jiří {Krejsa}", title="MediaPipe and Its Suitability for Sign Language Recognition", booktitle="ENGINEERING MECHANICS 2023", year="2023", series="First edition", journal="Engineering Mechanics ....", number="1", pages="251--254", publisher="Institute of Thermomechanics of the Czech Academy of Sciences", address="Prague", isbn="ISBN 978-80-87012-84", issn="1805-8256", url="https://www.engmech.cz/improc/2023/251.pdf" }