Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŠMARDA, Z. TŮMA, M. VYROUBALOVÁ, J.
Originální název
Fractional Calculus
Typ
skriptum
Jazyk
angličtina
Originální abstrakt
Fractional calculus is an area of mathematical analysis dealing with integration and derivation of any order. In particular, it examines the possibilities of using real and complex numbers as an order of derivatives, or integral. Specifically, we will deal with continuous dynamical systems based on the Riemann-Liouville derivative and integral and the Caputo derivative and integral. The theory is explained using a large number of solved examples. Especially, we pay attention to solution methods of fractional ordinary and functional equations based on the fractional Laplace transform and modifications of analytical methods from the theory of integer differential equations and systems. We also analyze the characteristics of fractional dynamic systems using the Laplace transform. We obtain the impulse characteristic from the non-integer operator transfer functions using Mittag-Leffler functions. A number of results are illustrated with graphical outputs.
Klíčová slova
Differential equations; Fractional laplace transform;Caputo derivative and integral;Riemann-Liouville derivative and integral
Autoři
ŠMARDA, Z.; TŮMA, M.; VYROUBALOVÁ, J.
Vydáno
23. 8. 2023
Strany od
1
Strany do
60
Strany počet
BibTex
@misc{BUT184443, author="Zdeněk {Šmarda} and Martin {Tůma} and Jana {Vyroubalová}", title="Fractional Calculus", year="2023", pages="1--60", note="course reader" }