Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
DIBLÍK, J. GALEWSKI, M. RADULESCU, V. ŠMARDA, Z.
Originální název
Multiplicity of solutions for nonlinear coercive problems
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We are concerned in this paper with problems that involve nonlinear potential mappings satisfying condition (S) and whose potentials are coercive. We first provide mild sufficient conditions for the minimizing sequence in the Weierstrass-Tonelli theorem in order to have strongly convergent subsequences. Next, we establish a three critical point theorem which is based on the Pucci-Serrin type mountain pass lemma and which is an infinite dimensional counterpart of the Courant theorem. Ricceri-type three critical point results then follow. Some applications to Dirichlet boundary value problems driven by the perturbed Laplacian are given in the final part of this paper.
Klíčová slova
Coercive functional;Multiple solutions; Nonlinear equations
Autoři
DIBLÍK, J.; GALEWSKI, M.; RADULESCU, V.; ŠMARDA, Z.
Vydáno
1. 12. 2023
Nakladatel
Elsevier
ISSN
0022-247X
Periodikum
Journal of Mathematical Analysis and Application
Ročník
528
Číslo
1
Stát
Spojené státy americké
Strany od
Strany do
13
Strany počet
URL
https://www.sciencedirect.com/science/article/pii/S0022247X23004766
Plný text v Digitální knihovně
http://hdl.handle.net/11012/245180
BibTex
@article{BUT185038, author="Josef {Diblík} and Marek {Galewski} and Vicentiu {Radulescu} and Zdeněk {Šmarda}", title="Multiplicity of solutions for nonlinear coercive problems", journal="Journal of Mathematical Analysis and Application", year="2023", volume="528", number="1", pages="1--13", doi="10.1016/j.jmaa.2023.127473", issn="0022-247X", url="https://www.sciencedirect.com/science/article/pii/S0022247X23004766" }