Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
SKOCAJ, M. DI CICCO, N. ZUGNO, T. BOBAN, M. BLUMENSTEIN, J. PROKEŠ, A. MIKULÁŠEK, T. VYCHODIL, J. MIKHAYLOV, K. TORNATORE, M. DEGLI ESPOSTI, V.
Originální název
Vehicle-to-Everything (V2X) Datasets for Machine Learning-Based Predictive Quality of Service
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We present two datasets for Machine Learning (ML)-based Predictive Quality of Service (PQoS) comprising Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) radio channel measurements. As V2V and V2I are both indispensable elements for providing connectivity in Intelligent Transport Systems (ITS), we argue that a combination of the two datasets enables the study of Vehicle-to-Everything (V2X) connectivity in its entire complexity. We describe in detail our methodologies for performing V2V and V2I measurement campaigns, and we provide illustrative examples on the use of the collected data. Specifically, we showcase the application of approximate Bayesian Methods using the two presented datasets to portray illustrative use cases of uncertainty-aware Quality of Service and Channel State Information forecasting. Finally, we discuss novel exploratory research direction building upon our work. The V2I and V2V datasets are available on IEEE Dataport, and the code utilized in our numerical experiments is publicly accessible via CodeOcean.
Klíčová slova
Vehicle-to-infrastructure; Power control; Vehicular ad hoc networks; Quality of service; Machine learning; Prediction algorithms; Particle measurements
Autoři
SKOCAJ, M.; DI CICCO, N.; ZUGNO, T.; BOBAN, M.; BLUMENSTEIN, J.; PROKEŠ, A.; MIKULÁŠEK, T.; VYCHODIL, J.; MIKHAYLOV, K.; TORNATORE, M.; DEGLI ESPOSTI, V.
Vydáno
1. 9. 2023
Nakladatel
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Místo
PISCATAWAY
ISSN
1558-1896
Periodikum
IEEE COMMUNICATIONS MAGAZINE
Ročník
61
Číslo
9
Stát
Spojené státy americké
Strany od
106
Strany do
112
Strany počet
7
URL
https://ieeexplore.ieee.org/abstract/document/10268872
BibTex
@article{BUT185064, author="Marco {Skocaj} and Nicola {Di Cicco} and Tommaso {Zugno} and Mate {Boban} and Jiří {Blumenstein} and Aleš {Prokeš} and Tomáš {Mikulášek} and Josef {Vychodil} and Konstantin {Mikhaylov} and Massimo {Tornatore} and Vittorio {Degli Esposti}", title="Vehicle-to-Everything (V2X) Datasets for Machine Learning-Based Predictive Quality of Service", journal="IEEE COMMUNICATIONS MAGAZINE", year="2023", volume="61", number="9", pages="106--112", doi="10.1109/MCOM.004.2200723", issn="1558-1896", url="https://ieeexplore.ieee.org/abstract/document/10268872" }