Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ANDRIUSHCHENKO, R. ALEXANDER, B. ČEŠKA, M. JUNGES, S. KATOEN, J. MACÁK, F.
Originální název
Search and Explore: Symbiotic Policy Synthesis in POMDPs
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This paper marries two state-of-the-art controller synthesis methods for partially observable Markov decision processes (POMDPs), a prominent model in sequential decision making under uncertainty. A central issue is to find a POMDP controller - that solely decides based on the observations seen so far - to achieve a total expected reward objective. As finding optimal controllers is undecidable, we concentrate on synthesising good finite-state controllers (FSCs). We do so by tightly integrating two modern, orthogonal methods for POMDP controller synthesis: a belief-based and an inductive approach. The former method obtains an FSC from a finite fragment of the so-called belief MDP, an MDP that keeps track of the probabilities of equally observable POMDP states. The latter is an inductive search technique over a set of FSCs, e.g., controllers with a fixed memory size. The key result of this paper is a symbiotic anytime algorithm that tightly integrates both approaches such that each profits from the controllers constructed by the other. Experimental results indicate a substantial improvement in the value of the controllers while significantly reducing the synthesis time and memory footprint.
Klíčová slova
partially observable Markov decision processes, finite-state controllers, beliefs, inductive synthesis
Autoři
ANDRIUSHCHENKO, R.; ALEXANDER, B.; ČEŠKA, M.; JUNGES, S.; KATOEN, J.; MACÁK, F.
Vydáno
2. 8. 2023
Nakladatel
Springer Verlag
Místo
Cham
ISBN
978-3-031-37708-2
Kniha
Computer Aided Verification
Edice
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Strany od
113
Strany do
135
Strany počet
23
BibTex
@inproceedings{BUT185190, author="ANDRIUSHCHENKO, R. and ALEXANDER, B. and ČEŠKA, M. and JUNGES, S. and KATOEN, J. and MACÁK, F.", title="Search and Explore: Symbiotic Policy Synthesis in POMDPs", booktitle="Computer Aided Verification", year="2023", series="Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)", volume="13966", pages="113--135", publisher="Springer Verlag", address="Cham", doi="10.1007/978-3-031-37709-9\{_}6", isbn="978-3-031-37708-2" }