Detail publikace

Search and Explore: Symbiotic Policy Synthesis in POMDPs

ANDRIUSHCHENKO, R. ALEXANDER, B. ČEŠKA, M. JUNGES, S. KATOEN, J. MACÁK, F.

Originální název

Search and Explore: Symbiotic Policy Synthesis in POMDPs

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

This paper marries two state-of-the-art controller synthesis methods for partially observable Markov decision processes (POMDPs), a prominent model in sequential decision making under uncertainty. A central issue is to find a POMDP controller - that solely decides based on the observations seen so far - to achieve a total expected reward objective. As finding optimal controllers is undecidable, we concentrate on synthesising good finite-state controllers (FSCs). We do so by tightly integrating two modern, orthogonal methods for POMDP controller synthesis: a belief-based and an inductive approach. The former method obtains an FSC from a finite fragment of the so-called belief MDP, an MDP that keeps track of the probabilities of equally observable POMDP states. The latter is an inductive search technique over a set of FSCs, e.g., controllers with a fixed memory size. The key result of this paper is a symbiotic anytime algorithm that tightly integrates both approaches such that each profits from the controllers constructed by the other. Experimental results indicate a substantial improvement in the value of the controllers while significantly reducing the synthesis time and memory footprint.

Klíčová slova

partially observable Markov decision processes, finite-state controllers, beliefs, inductive synthesis

Autoři

ANDRIUSHCHENKO, R.; ALEXANDER, B.; ČEŠKA, M.; JUNGES, S.; KATOEN, J.; MACÁK, F.

Vydáno

2. 8. 2023

Nakladatel

Springer Verlag

Místo

Cham

ISBN

978-3-031-37708-2

Kniha

Computer Aided Verification

Edice

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Strany od

113

Strany do

135

Strany počet

23

BibTex

@inproceedings{BUT185190,
  author="ANDRIUSHCHENKO, R. and ALEXANDER, B. and ČEŠKA, M. and JUNGES, S. and KATOEN, J. and MACÁK, F.",
  title="Search and Explore: Symbiotic Policy Synthesis in POMDPs",
  booktitle="Computer Aided Verification",
  year="2023",
  series="Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
  volume="13966",
  pages="113--135",
  publisher="Springer Verlag",
  address="Cham",
  doi="10.1007/978-3-031-37709-9\{_}6",
  isbn="978-3-031-37708-2"
}