Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KOZOVSKÝ, M. BUCHTA, L. BLAHA, P.
Originální název
Implementation of ANN for PMSM interturn short-circuit detection in the embedded system
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The problem of condition monitoring and fault detection in powertrain systems becomes more critical with the increasing use of fail-operational systems. These systems are essential in the automotive industry, robotics, and other industrial applications. One of the critical features of such a system is recognizing the fault and suppressing its influence. The paper describes a feed-forward artificial neural network-based diagnostic of interturn short-circuit faults in a dual three-phase permanent magnet synchronous motor. The paper focuses on using MLPN, and CNN for interturn short-circuit detection and, more importantly, their real implementation into the automotive AURIX TC397 microcontroller. The paper presents the achieved neural network inference times as well as data preprocessing computation time. The behavior of the ANNs is tested on an experimental configurable multiphase PMSM drive with the possibility to emulate interturn short-circuit fault using prepared winding taps. The paper includes the essential aspects that should be respected during ANN design and implementation into the microcontroller.
Klíčová slova
Neural network, fault detection, diagnostic, PMSM, motor
Autoři
KOZOVSKÝ, M.; BUCHTA, L.; BLAHA, P.
Vydáno
16. 10. 2023
Nakladatel
IEEE
Místo
Singapur
ISBN
979-8-3503-3182-0
Kniha
IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society
Strany od
1
Strany do
6
Strany počet
URL
https://ieeexplore.ieee.org/document/10312642
Plný text v Digitální knihovně
http://hdl.handle.net/11012/245226
BibTex
@inproceedings{BUT185461, author="Matúš {Kozovský} and Luděk {Buchta} and Petr {Blaha}", title="Implementation of ANN for PMSM interturn short-circuit detection in the embedded system", booktitle="IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society", year="2023", pages="6", publisher="IEEE", address="Singapur", doi="10.1109/IECON51785.2023.10312642", isbn="979-8-3503-3182-0", url="https://ieeexplore.ieee.org/document/10312642" }