Detail publikace

Concentrating solutions for singularly perturbed fractional (N/s)-Laplacian equations with nonlocal reaction

SHUAI, Y. RADULESCU, V. TANG, X. ZHANG, L.

Originální název

Concentrating solutions for singularly perturbed fractional (N/s)-Laplacian equations with nonlocal reaction

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

This paper is concerned with the following fractional (N/s)-Laplacian Choquard equation: epsilon(N )(-Delta)(s)(N/s)u + V(x)|u|(N/s-2)u = epsilon(mu)(1 / |x|(N-mu )& lowast;F(u) )f(u), x is an element of R-N,where (-Delta)(s)(N/s) denotes the (N/s)-Laplacian operator, 0 < mu < N, and V and f are continuous real functions satisfying some mild assumptions. Applying the weak growth conditions on the exponential critical nonlinearity f and without using the strictly monotone condition, we use some refined analysis and develop the arguments in the existing results to establish the existence of the ground state solution of the fractional (N/s)-Laplacian Choquard equation. Moreover, we also study the concentration phenomenon of the ground state solutions. As far as we know, our results seem to be new concerning the fractional (N/s)-Laplacian equation with the Choquard reaction.

Klíčová slova

NONLINEAR SCHRODINGER-EQUATIONS;GROUND-STATE SOLUTIONS; CHOQUARD EQUATION; CONCENTRATION BEHAVIOR; WEAK SOLUTIONS; MULTIPLICITY; EXISTENCE; INEQUALITY; CONSTANT; FIELD

Autoři

SHUAI, Y.; RADULESCU, V.; TANG, X.; ZHANG, L.

Vydáno

1. 5. 2024

ISSN

0933-7741

Periodikum

FORUM MATHEMATICUM

Ročník

36

Číslo

3

Stát

Spolková republika Německo

Strany od

783

Strany do

810

Strany počet

28

URL

BibTex

@article{BUT185747,
  author="Yuan {Shuai} and Vicentiu {Radulescu} and Xianhua {Tang} and Limin {Zhang}",
  title="Concentrating solutions for singularly perturbed fractional (N/s)-Laplacian equations with nonlocal reaction",
  journal="FORUM MATHEMATICUM",
  year="2024",
  volume="36",
  number="3",
  pages="783--810",
  doi="10.1515/forum-2023-0183",
  issn="0933-7741",
  url="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001089369200001"
}