Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
MICHÁLEK, J. OUJEZSKÝ, V. HOLÍK, M. ŠKORPIL, V.
Originální název
A Proposal for a Federated Learning Protocol for Mobile and Management Systems
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
In this research paper, we introduce a federated learning communication protocol tailored for emergency management applications. Our primary objective is to tackle the communication challenges that arise in such critical scenarios. In order to overcome the limitations associated with centralized server architectures, we present an innovative communication protocol. This protocol empowers the framework to effectively cooperate with multiple centralized servers, fostering efficient knowledge sharing and model training while ensuring the utmost data privacy and security. By harnessing this protocol, our framework elevates the performance and resilience of vital infrastructure systems operating on the Android platform, thereby facilitating real-time operational scenarios. This research makes a substantial contribution to the field of emergency management applications, as we offer a comprehensive solution that optimizes communication and enables seamless collaboration with numerous centralized servers.
Klíčová slova
Android; communication protocol; federated learning; framework; machine learning; mobile
Autoři
MICHÁLEK, J.; OUJEZSKÝ, V.; HOLÍK, M.; ŠKORPIL, V.
Vydáno
21. 12. 2023
Nakladatel
MDPI
ISSN
2076-3417
Periodikum
Applied Sciences - Basel
Ročník
14
Číslo
1
Stát
Švýcarská konfederace
Strany od
Strany do
Strany počet
URL
https://www.mdpi.com/2076-3417/14/1/101
Plný text v Digitální knihovně
http://hdl.handle.net/11012/245203
BibTex
@article{BUT186768, author="Jakub {Michálek} and Václav {Oujezský} and Martin {Holík} and Vladislav {Škorpil}", title="A Proposal for a Federated Learning Protocol for Mobile and Management Systems", journal="Applied Sciences - Basel", year="2023", volume="14", number="1", pages="1--14", doi="10.3390/app14010101", issn="2076-3417", url="https://www.mdpi.com/2076-3417/14/1/101" }