Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŘEHÁK, P.
Originální název
A precise asymptotic description of half-linear differential equations
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We study asymptotic behavior of solutions of nonoscillatory second-order half-linear differential equations. We give (in some sense optimal) conditions that guarantee generalized regular variation of all solutions, where no sign condition on the potential is assumed. For all of these solutions, we establish precise asymptotic formulas, where positive as well as negative potential is considered. We examine, as consequences, also equations with regularly varying coefficients, or with the coefficients viewed as perturbations of exponentials, or the equations under certain critical (double roots) settings. We make also asymptotic analysis of Poincare-Perron solutions. Many of our results are new even in the linear case.
Klíčová slova
asymptotic formula; half-linear differential equation; nonoscillatory solution; Poincare-Perron solution; regular variation
Autoři
Vydáno
8. 4. 2024
Nakladatel
WILEY-V C H VERLAG GMBH
Místo
WEINHEIM
ISSN
0025-584X
Periodikum
Mathematische Nachrichten
Ročník
297
Číslo
4
Stát
Spolková republika Německo
Strany od
1275
Strany do
1309
Strany počet
35
URL
https://onlinelibrary.wiley.com/doi/10.1002/mana.202200302
Plný text v Digitální knihovně
http://hdl.handle.net/11012/245540
BibTex
@article{BUT186969, author="Pavel {Řehák}", title="A precise asymptotic description of half-linear differential equations", journal="Mathematische Nachrichten", year="2024", volume="297", number="4", pages="1275--1309", doi="10.1002/mana.202200302", issn="0025-584X", url="https://onlinelibrary.wiley.com/doi/10.1002/mana.202200302" }