Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
BUREŠ, J. EEROLA, T. LENSU, L. KÄLVIÄINEN, H. ZEMČÍK, P.
Originální název
Plankton Recognition in Images with Varying Size
Typ
článek v časopise ve Scopus, Jsc
Jazyk
angličtina
Originální abstrakt
Monitoring plankton is important as they are an essential part of the aquatic food web as well as producers of oxygen. Modern imaging devices produce a massive amount of plankton image data which calls for automatic solutions. These images are characterized by a very large variation in both the size and the aspect ratio. Convolutional neural network (CNN) based classification methods, on the other hand, typically require a fixed size input. Simple scaling of the images into a common size contains several drawbacks. First, the information about the size of the plankton is lost. For human experts, the size information is one of the most important cues for identifying the species. Second, downscaling the images leads to the loss of fine details such as flagella essential for species recognition. Third, upscaling the images increases the size of the network. In this work, extensive experiments on various approaches to address the varying image dimensions are carried out on a challenging phytoplankton image dataset. A novel combination of methods is proposed, showing improvement over the baseline CNN.
Klíčová slova
plankton monitoring, mechine learning with varying size images, convlutional neural networks CNN
Autoři
BUREŠ, J.; EEROLA, T.; LENSU, L.; KÄLVIÄINEN, H.; ZEMČÍK, P.
Vydáno
21. 2. 2021
ISSN
0302-9743
Periodikum
Lecture Notes in Computer Science
Ročník
12666
Číslo
2
Stát
Spolková republika Německo
Strany od
110
Strany do
120
Strany počet
11
URL
https://link.springer.com/chapter/10.1007%2F978-3-030-68780-9_11
BibTex
@article{BUT187364, author="Jaroslav {Bureš} and Tuomas {Eerola} and Lasse {Lensu} and Heikki {Kälviäinen} and Pavel {Zemčík}", title="Plankton Recognition in Images with Varying Size", journal="Lecture Notes in Computer Science", year="2021", volume="12666", number="2", pages="110--120", doi="10.1007/978-3-030-68780-9\{_}11", issn="0302-9743", url="https://link.springer.com/chapter/10.1007%2F978-3-030-68780-9_11" }