Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
NGUYEN, T. RADULESCU, V.
Originální název
Multiple normalized solutions for fractional elliptic problems
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
In this article, we are first concerned with the existence of multiple normalized solutions to the following fractional p-Laplace problem:{(-Delta)(p)(s)v + V(xi(x))|v|(p-2)v = lambda|v|(p-2)v + f(v) in R-N, integral(N)(R) |v|(p )dx = a(p),where a, xi > 0, p >= 2, lambda is an element of R is an unknown parameter that appears as a Lagrange multiplier, V : R-N -> [0, infinity) is a continuous function, and f is a continuous function with L-p-subcritical growth. We prove that there exists the multiplicity of solutions by using the Lusternik-Schnirelmann category. Next, we show that the number of normalized solutions is at least the number of global minimum points of V, as xi is small enough via Ekeland's variational principle.
Klíčová slova
Lusternik-Schnirelmann category;normalized solutions;nonlinear Schrodinger equation;variational methods
Autoři
NGUYEN, T.; RADULESCU, V.
Vydáno
2. 9. 2024
ISSN
0933-7741
Periodikum
FORUM MATHEMATICUM
Ročník
36
Číslo
5
Stát
Spolková republika Německo
Strany od
1225
Strany do
1248
Strany počet
24
URL
https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001141871200001
BibTex
@article{BUT187378, author="Thin Van {Nguyen} and Vicentiu {Radulescu}", title="Multiple normalized solutions for fractional elliptic problems", journal="FORUM MATHEMATICUM", year="2024", volume="36", number="5", pages="1225--1248", doi="10.1515/forum-2023-0366", issn="0933-7741", url="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001141871200001" }