Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
Fozer, Daniel Nimmegeers, Philippe Toth, Andras Jozsef Varbanov, Petar Sabev Klemes, Jiri Jaromir Mizsey, Peter Hauschild, Michael Zwicky Owsianiak, Mikolaj
Originální název
Hybrid Prediction-Driven High-Throughput Sustainability Screening for Advancing Waste-to-Dimethyl Ether Valorization
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Assessing the prospective climate preservation potential of novel, innovative, but immature chemical production techniques is limited by the high number of process synthesis options and the lack of reliable, high-throughput quantitative sustainability pre-screening methods. This study presents the sequential use of data-driven hybrid prediction (ANN-RSM-DOM) to streamline waste- to-dimethyl ether (DME) upcycling using a set of sustainability criteria. Artificial neural networks (ANNs) are developed to generate in silico waste valorization experimental results and ex-ante model the operating space of biorefineries applying the organic fraction of municipal solid waste (OFMSW) and sewage sludge (SS). Aspen Plus process flowsheeting and ANN simulations are postprocessed using the response surface methodology (RSM) and desirability optimization method (DOM) to improve the in-depth mechanistic understanding of environmental systems and identify the most benign configurations. The hybrid prediction highlights the importance of targeted waste selection based on elemental composition and the need to design waste-specific DME synthesis to improve techno-economic and environmental performances. The developed framework reveals plant configurations with concurrent climate benefits (-1.241 and -2.128 kg CO2-eq (kg DME)(-1)) and low DME production costs (0.382 and 0.492 is an element of(kg DME)(-1)) using OFMSW and SS feedstocks. Overall, the multi-scale explorative hybrid prediction facilitates early stage process synthesis, assists in the design of block units with nonlinear characteristics, resolves the simultaneous analysis of qualitative and quantitative variables, and enables the high-throughput sustainability screening of low technological readiness level processes.
Klíčová slova
artificial neural network; explorative decarbonization; hybrid machine learning; hydrothermal gasification; optimization; process synthesis; sustainable-by-design; waste-to-chemicals
Autoři
Fozer, Daniel; Nimmegeers, Philippe; Toth, Andras Jozsef; Varbanov, Petar Sabev; Klemes, Jiri Jaromir; Mizsey, Peter; Hauschild, Michael Zwicky; Owsianiak, Mikolaj
Vydáno
29. 8. 2023
Nakladatel
AMER CHEMICAL SOC1155 16TH ST, NW, WASHINGTON, DC 20036
Místo
ISSN
0013-936X
Periodikum
ENVIRONMENTAL SCIENCE & TECHNOLOGY
Ročník
36
Číslo
57
Stát
Spojené státy americké
Strany od
13449
Strany do
13462
Strany počet
14
URL
https://pubs.acs.org/doi/10.1021/acs.est.3c01892
BibTex
@article{BUT187620, author="Fozer, Daniel and Nimmegeers, Philippe and Toth, Andras Jozsef and Varbanov, Petar Sabev and Klemes, Jiri Jaromir and Mizsey, Peter and Hauschild, Michael Zwicky and Owsianiak, Mikolaj", title="Hybrid Prediction-Driven High-Throughput Sustainability Screening for Advancing Waste-to-Dimethyl Ether Valorization", journal="ENVIRONMENTAL SCIENCE & TECHNOLOGY", year="2023", volume="36", number="57", pages="13449--13462", doi="10.1021/acs.est.3c01892", issn="0013-936X", url="https://pubs.acs.org/doi/10.1021/acs.est.3c01892" }