Detail publikace

Machine Learning for Antenna Design: Combining CST Studio Suite and Python

BEDNARSKÝ, V. RAIDA, Z.

Originální název

Machine Learning for Antenna Design: Combining CST Studio Suite and Python

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

The design and optimization of antennas is a complex and time-consuming process which combines an electromagnetic analysis to evaluate cost functions and a machine learning to consequently improve designs. In this paper, CST Studio Suite performs the numerical analysis, and Python scripts implement other steps. Python executes numerical operations, automatically generates models, and supports the CST analyses without requiring user’s interaction. Ultimately, the approach is aimed to utilize Python’s libraries PyTochr and TensorFlow to automate antenna designs, which can be leveraged by artificial intelligence, at a later stage.

Klíčová slova

CST Studio Suite, Python, PyTochr, TensorFlow, particle swarm optimization (PSO), canonical antenna

Autoři

BEDNARSKÝ, V.; RAIDA, Z.

Vydáno

25. 4. 2023

Nakladatel

BRNO UNIVERSITY OF TECHNOLOGY, FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

Místo

Brno

ISBN

978-80-214-6153-6

Kniha

PROCEEDINGS I OF THE 29TH STUDENT EEICT 2023

Edice

1

Číslo edice

1

Strany od

352

Strany do

356

Strany počet

5

URL

BibTex

@inproceedings{BUT188126,
  author="Vojtěch {Bednarský} and Zbyněk {Raida}",
  title="Machine Learning for Antenna Design: Combining CST Studio Suite and Python",
  booktitle="PROCEEDINGS I OF THE 29TH STUDENT EEICT 2023",
  year="2023",
  series="1",
  number="1",
  pages="352--356",
  publisher="BRNO UNIVERSITY OF TECHNOLOGY, FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION",
  address="Brno",
  isbn="978-80-214-6153-6",
  url="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_1.pdf"
}