Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ZENG, S. RADULESCU, V. WINKERT, P.
Originální název
NONLOCAL DOUBLE PHASE IMPLICIT OBSTACLE PROBLEMS WITH MULTIVALUED BOUNDARY CONDITIONS
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
In this paper, we consider a mixed boundary value problem with a nonhomogeneous, nonlinear differential operator (called double phase operator), a nonlinear convection term (a reaction term depending on the gradient), three multivalued terms, and an implicit obstacle constraint. Under very general assumptions on the data, we prove that the solution set of such an implicit obstacle problem is nonempty (so there is at least one solution) and weakly compact. The proof of our main result uses the Kakutani--Ky Fan fixed point theorem for multivalued operators along with the theory of nonsmooth analysis and variational methods for pseudomonotone operators.
Klíčová slova
Clarke's generalized gradient; convection term; convex subdifferential; double phase problem; existence results; implicit obstacle; Kakutani-Ky Fan fixed point theorem; mixed boundary conditions; multivalued mapping
Autoři
ZENG, S.; RADULESCU, V.; WINKERT, P.
Vydáno
24. 3. 2024
ISSN
0036-1410
Periodikum
SIAM JOURNAL ON MATHEMATICAL ANALYSIS
Ročník
56
Číslo
1
Stát
Spojené státy americké
Strany od
877
Strany do
912
Strany počet
36
URL
https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001171826200020
BibTex
@article{BUT188261, author="Shengda {Zeng} and Vicentiu {Radulescu} and Patrick {Winkert}", title="NONLOCAL DOUBLE PHASE IMPLICIT OBSTACLE PROBLEMS WITH MULTIVALUED BOUNDARY CONDITIONS", journal="SIAM JOURNAL ON MATHEMATICAL ANALYSIS", year="2024", volume="56", number="1", pages="877--912", doi="10.1137/22M1501040", issn="0036-1410", url="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001171826200020" }