Detail publikace

NONLOCAL DOUBLE PHASE IMPLICIT OBSTACLE PROBLEMS WITH MULTIVALUED BOUNDARY CONDITIONS

ZENG, S. RADULESCU, V. WINKERT, P.

Originální název

NONLOCAL DOUBLE PHASE IMPLICIT OBSTACLE PROBLEMS WITH MULTIVALUED BOUNDARY CONDITIONS

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

In this paper, we consider a mixed boundary value problem with a nonhomogeneous, nonlinear differential operator (called double phase operator), a nonlinear convection term (a reaction term depending on the gradient), three multivalued terms, and an implicit obstacle constraint. Under very general assumptions on the data, we prove that the solution set of such an implicit obstacle problem is nonempty (so there is at least one solution) and weakly compact. The proof of our main result uses the Kakutani--Ky Fan fixed point theorem for multivalued operators along with the theory of nonsmooth analysis and variational methods for pseudomonotone operators.

Klíčová slova

Clarke's generalized gradient; convection term; convex subdifferential; double phase problem; existence results; implicit obstacle; Kakutani-Ky Fan fixed point theorem; mixed boundary conditions; multivalued mapping

Autoři

ZENG, S.; RADULESCU, V.; WINKERT, P.

Vydáno

24. 3. 2024

ISSN

0036-1410

Periodikum

SIAM JOURNAL ON MATHEMATICAL ANALYSIS

Ročník

56

Číslo

1

Stát

Spojené státy americké

Strany od

877

Strany do

912

Strany počet

36

URL

BibTex

@article{BUT188261,
  author="Shengda {Zeng} and Vicentiu {Radulescu} and Patrick {Winkert}",
  title="NONLOCAL DOUBLE PHASE IMPLICIT OBSTACLE PROBLEMS WITH MULTIVALUED BOUNDARY CONDITIONS",
  journal="SIAM JOURNAL ON MATHEMATICAL ANALYSIS",
  year="2024",
  volume="56",
  number="1",
  pages="877--912",
  doi="10.1137/22M1501040",
  issn="0036-1410",
  url="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001171826200020"
}