Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
Yixuan Tang Grzegorz Orzechowski Aleš Prokop Aki Mikkola
Originální název
Monte Carlo tree search control scheme for multibody dynamics applications
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
There is considerable interest in applying reinforcement learning (RL) to improve machine control across multiple industries, and the automotive industry is one of the prime examples. Monte Carlo Tree Search (MCTS) has emerged and proven powerful in decision-making games, even without understanding the rules. In this study, multibody system dynamics (MSD) control is first modeled as a Markov Decision Process and solved with Monte Carlo Tree Search. Based on randomized search space exploration, the MCTS framework builds a selective search tree by repeatedly applying a Monte Carlo rollout at each child node. However, without a library of available choices, deciding among the many possibilities for agent parameters can be intimidating. In addition, the MCTS poses a significant challenge for searching due to the large branching factor. This challenge is typically overcome by appropriate parameter design, search guiding, action reduction, parallelization, and early termination. To address these shortcomings, the overarching goal of this study is to provide needed insight into inverted pendulum controls via vanilla and modified MCTS agents, respectively. A series of reward functions are well-designed according to the control goal, which maps a specific distribution shape of reward bonus and guides the MCTS-based control to maintain the upright position. Numerical examples show that the reward-modified MCTS algorithms significantly improve the control performance and robustness of the default choice of a constant reward that constitutes the vanilla MCTS. The exponentially decaying reward functions perform better than the constant value or polynomial reward functions. Moreover, the exploitation vs. exploration trade-off and discount parameters are carefully tested. The study’s results can guide the research of RL-based MSD users.
Klíčová slova
Monte Carlo Tree Search; Multibody dynamics; Reward functions; Parametric analysis; Artificial intelligence control; Inverted pendulum
Autoři
Yixuan Tang; Grzegorz Orzechowski; Aleš Prokop; Aki Mikkola
Vydáno
3. 4. 2024
Nakladatel
Springer Nature
ISSN
1573-269X
Periodikum
NONLINEAR DYNAMICS
Ročník
112
Číslo
10
Stát
Spojené státy americké
Strany od
8363
Strany do
8391
Strany počet
28
URL
https://doi.org/10.1007/s11071-024-09509-8
Plný text v Digitální knihovně
http://hdl.handle.net/11012/245527
BibTex
@article{BUT188384, author="Yixuan {Tang} and Grzegorz {Orzechowski} and Aleš {Prokop} and Aki {Mikkola}", title="Monte Carlo tree search control scheme for multibody dynamics applications", journal="NONLINEAR DYNAMICS", year="2024", volume="112", number="10", pages="8363--8391", doi="10.1007/s11071-024-09509-8", issn="1573-269X", url="https://doi.org/10.1007/s11071-024-09509-8" }