Detail publikace

Deep Learning for Agar Plate Analysis: Predicting Microbial Cluster Counts

ČIČATKA, M. BURGET, R.

Originální název

Deep Learning for Agar Plate Analysis: Predicting Microbial Cluster Counts

Typ

článek ve sborníku mimo WoS a Scopus

Jazyk

angličtina

Originální abstrakt

Manual analysis of agar plates remains a bottleneck in microbiology, hindering automation efforts. This study investigates the feasibility of using machine learning for automated microbial cluster count detection from agar plate images. We employed various methods, including elbow detection (baseline) and supervised learning models (Support Vector Regression, Simple CNN, XGBoost, Random Forest, pre-trained VGG, and pre-trained Inceptionv3). The results demonstrate that machine learning models significantly outperform the baseline, achieving lower prediction errors and higher accuracy in identifying the correct number of clusters. Notably, both pre-trained VGG and InceptionV3 achieved strong performance, highlighting the effectiveness of transfer learning for this task. InceptionV3 exhibited the lowest error rates overall. This study establishes a foundation for developing robust automated systems for quantifying microbial growth, potentially streamlining workflows and improving efficiency in microbiological research and clinical settings.

Klíčová slova

image processing, machine learning, agar plates

Autoři

ČIČATKA, M.; BURGET, R.

Vydáno

25. 4. 2024

Nakladatel

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

Místo

Brno

Strany od

197

Strany do

201

Strany počet

5

URL

BibTex

@inproceedings{BUT188473,
  author="Michal {Čičatka} and Radim {Burget}",
  title="Deep Learning for Agar Plate Analysis: Predicting Microbial Cluster Counts",
  booktitle="Proceedings I of the 30th Student EEICT 2024 (General Papers)",
  year="2024",
  pages="197--201",
  publisher="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií",
  address="Brno",
  url="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_1.pdf"
}