Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
LI, Y. RADULESCU, V. ZHANG, B.
Originální název
Critical planar Schrödinger–Poisson equations: existence, multiplicity and concentration
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
In this paper, we are concerned with the study of the following 2-D Schrödinger–Poisson equation with critical exponential growth −ε^2\delta u + V (x)u + ε−α (Iα ∗ |u|q )|u|q−2u = f (u), where ε > 0 is a parameter, Iα is the Riesz potential, 0 < α < 2, V ∈ C(R2, R), and f ∈ C(R, R) satisfies the critical exponential growth. By variational methods, we first prove the existence of ground state solutions for the above system with the periodic potential. Then we obtain that there exists a positive ground state solution of the above system concentrating at a global minimum of V in the semi-classical limit under some suitable conditions. Meanwhile, the exponential decay of this ground state solution is detected. Finally, we establish the multiplicity of positive solutions by using the Ljusternik–Schnirelmann theory.
Klíčová slova
Schrödinger–Poisson system ; Ground state solutions ; Concentration behavior ; Critical exponential growth
Autoři
LI, Y.; RADULESCU, V.; ZHANG, B.
Vydáno
30. 5. 2024
Nakladatel
SPRINGER HEIDELBERG
Místo
HEIDELBERG, GERMANY
ISSN
0025-5874
Periodikum
MATHEMATISCHE ZEITSCHRIFT
Ročník
307
Číslo
3
Stát
Spolková republika Německo
Strany od
1
Strany do
25
Strany počet
URL
https://link.springer.com/article/10.1007/s00209-024-03520-w
BibTex
@article{BUT188818, author="Yiqing {Li} and Vicentiu {Radulescu} and Binlin {Zhang}", title="Critical planar Schrödinger–Poisson equations: existence, multiplicity and concentration", journal="MATHEMATISCHE ZEITSCHRIFT", year="2024", volume="307", number="3", pages="1--25", doi="10.1007/s00209-024-03520-w", issn="0025-5874", url="https://link.springer.com/article/10.1007/s00209-024-03520-w" }