Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
NOVÁK, J. HANÁK, J. CHUDÝ, P.
Originální název
Hybrid Modeling Approach for Optimization Based Control of Multirotor Unmanned Aerial Vehicles
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
The first principle based model synthesis is fundamental to Guidance, Navigation, and Control (GNC) solution development and integration. Optimization techniques such as Model Predictive Control (MPC) often rely on simplified governing equations of the system, omitting complex interactions, which are difficult to accurately model or pose numerical challenges for the optimization problem solver. This paper investigates a hybrid modeling approach based on Sparse Identification of Nonlinear Dynamics (SINDy) for local model adaptation within the MPC framework. The presented hybrid modeling approach benefits from the known structure of a physics-based model such that the learning process is computationally lightweight. Numerical experiments assume a multirotor Unmanned Aerial Vehicle (UAV) is subject to external phenomena typically encountered in urban environments, such as ground effects or wind gusts.
Klíčová slova
Model Predictive Control, Sparse Identification of Nonlinear Dynamics, Unmanned Aerial Vehicle
Autoři
NOVÁK, J.; HANÁK, J.; CHUDÝ, P.
Vydáno
28. 9. 2024
Nakladatel
International Council of the Aeronautical Sciences
Místo
Florence
ISSN
2958-4647
Periodikum
ICAS Proceedings
Stát
Spolková republika Německo
Strany od
1
Strany do
10
Strany počet
BibTex
@inproceedings{BUT189118, author="Jiří {Novák} and Jiří {Hanák} and Peter {Chudý}", title="Hybrid Modeling Approach for Optimization Based Control of Multirotor Unmanned Aerial Vehicles", booktitle="34th Congress of the International Council of the Aeronautical Sciences, ICAS 2024", year="2024", journal="ICAS Proceedings", pages="1--10", publisher="International Council of the Aeronautical Sciences", address="Florence", issn="2958-4647" }