Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KOZUBÍK, M. VÁCLAVEK, P.
Originální název
Control Set Reduction for PMSM Predictive Controller via Assisted Learning Algorithm
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This paper introduces innovative methods for reducing the control set in finite control set model predictive control of the Permanent Magnet Synchronous Motor powered by a 3-level voltage source inverter. The primary objective of this reduction is to address a crucial factor in the computational burden of the control algorithm-the exponential growth in the number of potential switching state combinations forming the controller’s control set with an increasing prediction horizon length. The proposed methods aim to decrease the number of switching states necessary for evaluation, mitigating the aforementioned exponential growth. These methods leverage information about the controller’s behavior. The first method relies solely on the count of transitions between individual switching states. Additionally, the second method incorporates information about the states of the controlled motor to construct a decision tree, forming the new control set. The behavior of the controllers with reduced and complete control sets is compared in the simulation experiment, emphasizing the proper tracking of the requested angular speed and their overall computational complexity.
Klíčová slova
finite control set, model predictive control, nonlinear control, permanent magnet synchronous motor, supervised learning
Autoři
KOZUBÍK, M.; VÁCLAVEK, P.
Vydáno
18. 6. 2024
Nakladatel
IEEE
ISBN
979-8-3503-9408-5
Kniha
2024 IEEE 33rd International Symposium on Industrial Electronics (ISIE)
Strany od
1
Strany do
6
Strany počet
URL
https://ieeexplore.ieee.org/abstract/document/10595683
Plný text v Digitální knihovně
http://hdl.handle.net/11012/249361
BibTex
@inproceedings{BUT189125, author="Michal {Kozubík} and Pavel {Václavek}", title="Control Set Reduction for PMSM Predictive Controller via Assisted Learning Algorithm", booktitle="2024 IEEE 33rd International Symposium on Industrial Electronics (ISIE)", year="2024", pages="6", publisher="IEEE", doi="10.1109/ISIE54533.2024.10595683", isbn="979-8-3503-9408-5", url="https://ieeexplore.ieee.org/abstract/document/10595683" }
Dokumenty
ISIE2024 - Control Set Reduction for PMSM Predictive Controller via Assisted Learning Algorithm.pdf