Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
MESÁROŠOVÁ, M. MIHÁLIK, O. JIRGL, M.
Originální název
CNN Architecture for Posture Classification on Small Data
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
A convolutional neural network is often mentioned as one of the deep learning methods that requires a large amount of training data. Questioning this belief, this paper explores the applicability of classification based on a shallow net structure trained on a small data set in the~context of patient posture classification based on data from a pressure mattress. Designing a CNN often presents a complex problem, especially without a universally applicable approach, allowing many diverse structural possibilities and training settings. We tested various training options and layer configurations to provide an overview of influential parameters for posture classification. Experiments show encouraging results with the leave-one-out cross-validation accuracy of 93.1% of one of the evaluated CNN structures and its hyperparameter settings.
Klíčová slova
CNN, fine tuning, network structure, optimization, posture classification
Autoři
MESÁROŠOVÁ, M.; MIHÁLIK, O.; JIRGL, M.
Vydáno
14. 8. 2024
Nakladatel
Elsevier
Místo
Brno, Czechia
ISSN
2405-8963
Periodikum
IFAC-PapersOnLine (ELSEVIER)
Ročník
58
Číslo
9
Stát
Nizozemsko
Strany od
299
Strany do
304
Strany počet
6
URL
https://doi.org/10.1016/j.ifacol.2024.07.413
Plný text v Digitální knihovně
http://hdl.handle.net/11012/249472
BibTex
@inproceedings{BUT189141, author="Michaela {Mesárošová} and Ondrej {Mihálik} and Miroslav {Jirgl}", title="CNN Architecture for Posture Classification on Small Data", booktitle="18th IFAC Conference on Programmable Devices and Embedded Systems – PDeS 2024.", year="2024", journal="IFAC-PapersOnLine (ELSEVIER)", volume="58", number="9", pages="299--304", publisher="Elsevier", address="Brno, Czechia", doi="10.1016/j.ifacol.2024.07.413", issn="2405-8963", url="https://doi.org/10.1016/j.ifacol.2024.07.413" }