Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
PAPAGEORGIOU, N. RADULESCU, V.
Originální název
Some useful tools in the study of nonlinear elliptic problems
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
This paper gives an overview of some basic aspects concerning the qualitative analysis of nonlinear, nonhomogeneous elliptic problems. We are concerned with two classes of elliptic equations with Dirichlet boundary condition. The first problem is driven by a general nonhomogeneous differential operator, which includes several usual operators (such as the (p,q)-Laplace operator introduced by P. Marcellini). Next, we focus on differential operators with unbalanced growth in the nonautonomous case. Our analysis will point out some relevant differences between balanced and unbalanced growth problems. The presentation is done in the context of Dirichlet problems but a similar analysis can be developed for other boundary conditions, such as Neumann or Robin.
Klíčová slova
(p, q)-equation; Constant sign and nodal solutions; Dirichlet boundary condition; Double phase energy; Nonhomogeneous differential operator; Nonlinear elliptic equation
Autoři
PAPAGEORGIOU, N.; RADULESCU, V.
Vydáno
5. 12. 2024
ISSN
0723-0869
Periodikum
EXPOSITIONES MATHEMATICAE
Ročník
42(6)
Číslo
125616
Stát
Spolková republika Německo
Strany od
1
Strany do
27
Strany počet
URL
https://doi.org/10.1016/j.exmath.2024.125616
BibTex
@article{BUT189703, author="Nikolaos S. {Papageorgiou} and Vicentiu {Radulescu}", title="Some useful tools in the study of nonlinear elliptic problems", journal="EXPOSITIONES MATHEMATICAE", year="2024", volume="42(6)", number="125616", pages="27", doi="10.1016/j.exmath.2024.125616", issn="0723-0869", url="https://doi.org/10.1016/j.exmath.2024.125616" }