Detail publikace

Some useful tools in the study of nonlinear elliptic problems

PAPAGEORGIOU, N. RADULESCU, V.

Originální název

Some useful tools in the study of nonlinear elliptic problems

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

This paper gives an overview of some basic aspects concerning the qualitative analysis of nonlinear, nonhomogeneous elliptic problems. We are concerned with two classes of elliptic equations with Dirichlet boundary condition. The first problem is driven by a general nonhomogeneous differential operator, which includes several usual operators (such as the (p,q)-Laplace operator introduced by P. Marcellini). Next, we focus on differential operators with unbalanced growth in the nonautonomous case. Our analysis will point out some relevant differences between balanced and unbalanced growth problems. The presentation is done in the context of Dirichlet problems but a similar analysis can be developed for other boundary conditions, such as Neumann or Robin.

Klíčová slova

(p, q)-equation; Constant sign and nodal solutions; Dirichlet boundary condition; Double phase energy; Nonhomogeneous differential operator; Nonlinear elliptic equation

Autoři

PAPAGEORGIOU, N.; RADULESCU, V.

Vydáno

5. 12. 2024

ISSN

0723-0869

Periodikum

EXPOSITIONES MATHEMATICAE

Ročník

42(6)

Číslo

125616

Stát

Spolková republika Německo

Strany od

1

Strany do

27

Strany počet

27

URL

BibTex

@article{BUT189703,
  author="Nikolaos S. {Papageorgiou} and Vicentiu {Radulescu}",
  title="Some useful tools in the study of nonlinear elliptic problems",
  journal="EXPOSITIONES MATHEMATICAE",
  year="2024",
  volume="42(6)",
  number="125616",
  pages="27",
  doi="10.1016/j.exmath.2024.125616",
  issn="0723-0869",
  url="https://doi.org/10.1016/j.exmath.2024.125616"
}